890 resultados para Memory and resentment
Resumo:
Objective: To evaluate whether there are visual and neurophysical decrements in workers with low exposure to Hg vapor. Methods: Visual fields, contrast sensitivity, color vision, and neuropsychological functions were measured in 10 workers (32.5 +/- 8.5 years) chronically exposed to Hg vapor (4.3 +/- 2.8 years; urinary Hg concentration 22.3 +/- 9.3 mu g/g creatinine). Results: For the worst eyes, we found altered visual field thresholds, lower contrast sensitivity, and color discrimination compared with controls (P < 0.05). There were no significant differences between Hg-exposed subjects and controls on. neuropsychological tests. Nevertheless, duration of exposure was statistically correlated to verbal memory and depression scores. Conclusions: Chronic exposure to Hg vapor at currently accepted safety levels was found to be associated with visual losses but not with neuropsychological dysfunctions in the sample of workers studied. (J Occup Environ Med. 2009,51:1403-1412)
Resumo:
Background: Early progressive nonfluent aphasia (PNFA) may be difficult to differentiate from semantic dementia (SD) in a nonspecialist setting. There are descriptions of the clinical and neuropsychological profiles of patients with PNFA and SD but few systematic comparisons. Method: We compared the performance of groups with SD (n = 27) and PNFA (n = 16) with comparable ages, education, disease duration, and severity of dementia as measured by the Clinical Dementia Rating Scale on a comprehensive neuropsychological battery. Principal components analysis and intergroup comparisons were used. Results: A 5-factor solution accounted for 78.4% of the total variance with good separation of neuropsychological variables. As expected, both groups were anomic with preserved visuospatial function and mental speed. Patients with SD had lower scores on comprehension-based semantic tests and better performance on verbal working memory and phonological processing tasks. The opposite pattern was found in the PNFA group. Conclusions: Neuropsychological tests that examine verbal and nonverbal semantic associations, verbal working memory, and phonological processing are the most helpful for distinguishing between PNFA and SD.
Resumo:
An association between memory and executive dysfunction (ED) has been demonstrated in patients with mixed neurological disorders. We aimed to investigate the impact of ED in memory tasks of children with temporal lobe epilepsy (TLE). We evaluated 36 children with TLE and 28 controls with tests for memory, learning, attention, mental flexibility, and mental tracking. Data analysis was composed of comparison between patients and controls in memory and executive function; correlation between memory and executive function tests; and comparison between patients with mild and severe ED in memory tests. Children with TLE had worse performance in focused attention, immediate and delayed recall, phonological memory, mental tracking, planning, and abstraction. Planning, abstraction, and mental tracking were correlated with visual and verbal memory. Children with severe ED had worse performance in verbal and visual memory and learning tests. This study showed that ED was related to memory performance in children with TLE. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.
Resumo:
Regulatory T cells (Treg) actively regulate alloimmune responses and promote transplantation tolerance. Polyclonal anti-thymocyte globulin (ATG), a widely used induction therapy in clinical organ transplantation, depletes peripheral T cells. However, resistance to tolerance induction is seen with certain T cell depleting strategies and is attributed to alterations in the balance of naïve, memory and regulatory T cells. Here we report a novel reagent, murine ATG (mATG), depletes T cells but preferentially spares CD25+ natural Tregs which limit skewing of T cell repertoire toward T-effector-memory (Tem) phenotype among the recovering T cells. T-cell depletion with mATG combined with CTLA4Ig and Sirolimus synergize to prolong graft survival by tipping the Treg/Tem balance further in favor of Tregs by preserving Tregs, facilitating generation of new Tregs by a conversion mechanism and limiting Tem expansion in response to alloantigen and homeostatic proliferation. These results provide the rationale for translating such novel combination therapies to promote tolerance in primate and human organ transplantation.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.
Resumo:
Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of current techniques for generating leukemia-reactive CTLs from unprimed healthy donors in vitro. In this work, a novel allogeneic mini-mixed lymphocyte/leukemia culture (mini-MLLC) approach was established by stimulating CD8+ T cells isolated from peripheral blood of healthy donors at comparably low numbers (i.e. 10e4/well) with HLA class I-matched primary AML blasts in 96-well microtiter plates. Before culture, CD8+ T cells were immunomagnetically separated into CD62L(high)+ and CD62L(low)+/neg subsets enriched for naive/central memory and effector memory cells, respectively. The application of 96-well microtiter plates aimed at creating multiple different responder-stimulator cell compositions in order to provide for the growth of leukemia-reactive CTLs optimized culture conditions by chance. The culture medium was supplemented with interleukin (IL)-7, IL-12, and IL-15. On day 14, IL-12 was replaced by IL-2. In eight different related and unrelated donor/AML pairs with complete HLA class I match, numerous CTL populations were isolated that specifically lysed myeloid leukemias in association with various HLA-A, -B, or -C alleles. These CTLs recognized neither lymphoblastoid B cell lines of donor and patient origin nor primary B cell leukemias expressing the corresponding HLA restriction element. CTLs expressed T cell receptors of single V-beta chain families, indicating their clonality. The vast majority of CTL clones were obtained from mini-MLLCs initiated with CD8+ CD62L(high)+ cells. Using antigen-specific stimulation, multiple CTL populations were amplified to 10e8-10e10 cells within six to eight weeks. The capability of mini-MLLC derived AML-reactive CTL clones to inhibit the engraftment of human primary AML blasts was investigated in the immunodeficient nonobese diabetic/severe combined immune deficient IL-2 receptor common γ-chain deficient (NOD/SCID IL2Rγnull) mouse model. The leukemic engraftment in NOD/SCID IL2Rγnull was specifically prevented if inoculated AML blasts had been pre-incubated in vitro with AML-reactive CTLs, but not with anti-melanoma control CTLs. These results demonstrate that myeloid leukemia-specific CTL clones capable of preventing AML engraftment in mice can be rapidly isolated from CD8+ CD62L(high)+ T cells of healthy donors in vitro. The efficient generation and expansion of these CTLs by the newly established mini-MLLC approach opens the door for several potential applications. First, CTLs can be used within T cell-driven antigen identification strategies to extend the panel of molecularly defined AML antigens that are recognizable by T cells of healthy donors. Second, because these CTLs can be isolated from the stem cell donor by mini-MLLC prior to transplantation, they could be infused into AML patients as a part of the stem cell allograft, or early after transplantation when the leukemia burden is low. The capability of these T cells to expand and function in vivo might require the simultaneous administration of AML-reactive CD4+ T cells generated by a similar in vitro strategy or, less complex, the co-transfer of CD8-depleted donor lymphocytes. To prepare clinical testing, the mini-MLLC approach should now be translated into a protocol that is compatible with good manufacturing practice guidelines.
Resumo:
Data Distribution Management (DDM) is a core part of High Level Architecture standard, as its goal is to optimize the resources used by simulation environments to exchange data. It has to filter and match the set of information generated during a simulation, so that each federate, that is a simulation entity, only receives the information it needs. It is important that this is done quickly and to the best in order to get better performances and avoiding the transmission of irrelevant data, otherwise network resources may saturate quickly. The main topic of this thesis is the implementation of a super partes DDM testbed. It evaluates the goodness of DDM approaches, of all kinds. In fact it supports both region and grid based approaches, and it may support other different methods still unknown too. It uses three factors to rank them: execution time, memory and distance from the optimal solution. A prearranged set of instances is already available, but we also allow the creation of instances with user-provided parameters. This is how this thesis is structured. We start introducing what DDM and HLA are and what do they do in details. Then in the first chapter we describe the state of the art, providing an overview of the most well known resolution approaches and the pseudocode of the most interesting ones. The third chapter describes how the testbed we implemented is structured. In the fourth chapter we expose and compare the results we got from the execution of four approaches we have implemented. The result of the work described in this thesis can be downloaded on sourceforge using the following link: https://sourceforge.net/projects/ddmtestbed/. It is licensed under the GNU General Public License version 3.0 (GPLv3).
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4 × 10(-5) and 4 × 10(-6), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.
Resumo:
In this thesis, I explore the relationships between trauma, memory, and narrative, particularly the ways in which trauma simultaneously disrupts and engenders narrative structures. I consider various trauma theories by authors such as Cathy Caruth, Judith Herman, Ruth Leys, and Dominick LaCapra. I also consider how psychoanalytic theory and criticism, specifically the writings of Sigmund Freud, inform the study of traumatic experience from both literary and personal perspectives. Furthermore, I consider theories regarding the relationship between trauma and narrative by authors such as Peter Brooks and John Pilkington. James Joyce¿s Ulysses and William Faulkner¿s Light in August serve, for my purposes, as trauma-texts and reflect the ways in which trauma might complicate the simultaneous destruction and creation of narrative strategies. Reading Ulysses and Light in August as trauma-texts that are both in mourning and melancholic gives us complementary, and contradictory, reasons for why we enjoy them. Mourning constructs a relationship between victim and witness, in which we can hear the voice of trauma and engage it in discourse. Conversely, melancholia creates a relationship between performer and spectator, in which we experience, and are fascinated by, the spectacle of another¿s trauma. Laughter, perversity, sorrow, and respite engage the reader in both texts, and raise questions about how one `remembers-to-forget¿ traumatic experiences. The narratives of each text¿s characters offer unique performances of mourning and melancholia. Thus, while this thesis engenders more questions than answers, I hope to argue that Ulysses and Light in August are significant literary works because each engages the reader in traumatic discourse, entertains the reader with the traumatic spectacle, and enlightens the reader on the complex relationship between trauma and narrative.
Resumo:
This study investigated whether children aged between 8 and 12 years born very preterm (VPT) and/or at very low birth weight (VLBW) performed lower than same-aged term-born controls in cognitive and behavioral aspects of three executive functions: inhibition, working memory, and shifting. Special attention was given to sex differences. Fifty-two VPT/VLBW children (26 girls, 50%) born in the cohort of 1998-2003 and 36 same-aged term-born children (18 girls, 50%) were recruited. As cognitive measures, children completed tasks of inhibition (Color-Word Interference Test, D-KEFS; Delis, Kaplan, & Kramer, 2001 ), working memory (digit span backwards, HAWIK-IV; Petermann & Petermann, 2008 ), and shifting (Trail Making Test, number-letter-switching, D-KEFS; Delis et al., 2001 ). As behavioral measures, mothers completed the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000 ). Scales of interest were inhibit, working memory, and shift. Analyses of the cognitive aspects of executive functions revealed that VPT/VLBW children performed significantly lower than controls in the shifting task but not in the working memory and inhibition tasks. Analyses of behavioral aspects of executive functions revealed that VPT/VLBW children displayed more problems than the controls in working memory in everyday life but not in inhibition and shifting. No sex differences could be detected either in cognitive or behavioral aspects of executive functions. To conclude, cognitive and behavioral measures of executive functions were not congruent in VPT/VLBW children. In clinical practice, the combination of cognitive and behavioral instruments is required to disclose children's executive difficulties.