912 resultados para Medical Image Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context: Mobile applications support a set of user-interaction features that are independent of the application logic. Rotating the device, scrolling, or zooming are examples of such features. Some bugs in mobile applications can be attributed to user-interaction features. Objective: This paper proposes and evaluates a bug analyzer based on user-interaction features that uses digital image processing to find bugs. Method: Our bug analyzer detects bugs by comparing the similarity between images taken before and after a user-interaction. SURF, an interest point detector and descriptor, is used to compare the images. To evaluate the bug analyzer, we conducted a case study with 15 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed with SURF to obtain interest points, from which a similarity percentage was computed, to finally decide whether there was a bug. Results: We performed a total of 49 user-interaction feature tests. When manually testing the applications, 17 bugs were found, whereas when using image processing, 15 bugs were detected. Conclusions: 8 out of 15 mobile applications tested had bugs associated to user-interaction features. Our bug analyzer based on image processing was able to detect 88% (15 out of 17) of the user-interaction bugs found with manual testing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classification of images in glaucomatous or not. We obtained results of 93% accuracy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract: As time has passed, the general purpose programming paradigm has evolved, producing different hardware architectures whose characteristics differ widely. In this work, we are going to demonstrate, through different applications belonging to the field of Image Processing, the existing difference between three Nvidia hardware platforms: two of them belong to the GeForce graphics cards series, the GTX 480 and the GTX 980 and one of the low consumption platforms which purpose is to allow the execution of embedded applications as well as providing an extreme efficiency: the Jetson TK1. With respect to the test applications we will use five examples from Nvidia CUDA Samples. These applications are directly related to Image Processing, as the algorithms they use are similar to those from the field of medical image registration. After the tests, it will be proven that GTX 980 is both the device with the highest computational power and the one that has greater consumption, it will be seen that Jetson TK1 is the most efficient platform, it will be shown that GTX 480 produces more heat than the others and we will learn other effects produced by the existing difference between the architecture of the devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.