987 resultados para Mechanical components
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
Between 2000/01 and 2006/07, the approval rate of a Thermodynamics course in a Mechanical Engineer graduation was 25%. However, a careful analysis of the results showed that 41% of the students chosen not to attend or dropped out, missing the final examination. Thus, a continuous assessment methodology was developed, whose purpose was to reduce drop out, motivating students to attend this course, believing that what was observed was due, not to the incapacity to pass, but to the anticipation of the inevitability of failure by the students. If, on one hand, motivation is defined as a broad construct pertaining to the conditions and processes that account for the arousal, direction, magnitude, and maintenance of effort, on the other hand, assessment is one of the most powerful tools to change the will that students have to learn, motivating them to learn in a quicker and permanent way. Some of the practices that were implemented, included: promoting learning goal orientation rather than performance goal orientation; cultivating intrinsic interest in the subject and put less emphasis on grades but make grading criteria explicit; emphasizing teaching approaches that encourage collaboration among students and cater for a range of teaching styles; explaining the reasons for, and the implications of, tests; providing feedback to students about their performance in a form that is non-egoinvolving and non-judgemental and helping students to interpret it; broadening the range of information used in assessing the attainment of individual students. The continuous assessment methodology developed was applied in 2007/08 and 2008/09, having found an increase in the approval from 25% to 55% (30%), accompanied by a decrease of the drop out from 41% to 23,5% (17,5%). Flunking with a numerical grade lowered from 34,4% to 22,0% (12,4%). The perception by the students of the continuous assessment relevance was evaluated with a questionnaire. 70% of the students that failed the course respond that, nevertheless, didn’t repent having done the continuous assessment.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This study focus on the probabilistic modelling of mechanical properties of prestressing strands based on data collected from tensile tests carried out in Laboratório Nacional de Engenharia Civil (LNEC), Portugal, for certification purposes, and covers a period of about 9 years of production. The strands studied were produced by six manufacturers from four countries, namely Portugal, Spain, Italy and Thailand. Variability of the most important mechanical properties is examined and the results are compared with the recommendations of the Probabilistic Model Code, as well as the Eurocodes and earlier studies. The obtained results show a very low variability which, of course, benefits structural safety. Based on those results, probabilistic models for the most important mechanical properties of prestressing strands are proposed.
Resumo:
It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.
Resumo:
This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.
Resumo:
Tese de Mestrado em Engenharia Informática
Resumo:
Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.
Resumo:
As crescentes preocupações ambientais e a necessidade de um desenvolvimento sustentável tem proporcionado um grande interesse no estudo e desenvolvimento de materiais mais ecológicos e amigos do ambiente. No caso particular da indústria dos materiais compósitos, a utilização de fibras naturais de origem vegetal, em substituição das tradicionais fibras de vidro, tem aumentado significativamente nos últimos anos. Para além dos claros benefícios ecológicos, a utilização de fibras naturais em detrimento das fibras de vidro, possibilita também o fabrico de componentes com baixo peso, boas propriedades mecânicas, baixo custo, pouco abrasivos às ferramentas de produção e com boas propriedades de isolamento térmico e acústico. Contudo, existem também algumas limitações decorrentes da utilização de fibras naturais como reforço de materiais poliméricos, como exemplo, a possibilidade de emitirem odores e absorverem água, a falta de adesão entre as fibras e as matrizes e o facto de possuírem baixa resistência à temperatura. No presente trabalho, foram estudadas e analisadas as propriedades mecânicas de laminados de matriz termoendurecível de epóxido e poliéster, reforçados com várias camadas de tecido bidireccional de fibras de juta. Para além dos referidos laminados, foram também produzidos e estudados compósitos de matriz termoplástica biodegradável de PLA (ácido poliláctico), reforçados com fibras curtas de juta. Todos os compósitos produzidos foram sujeitos a ensaios de tracção e flexão e as suas propriedades foram comparadas. O tecido de juta utilizado como reforço dos compósitos fabricados, foi caracterizado através de vários ensaios, utilizados tipicamente na indústria têxtil. As propriedades extraídas destes ensaios, foram úteis para a previsão das propriedades mecânicas dos materiais compósitos fabricados.Por fim, foi realizada uma análise critica sobres todos os resultados extraídos dos ensaios efectuados.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecãnica
Resumo:
A realização deste trabalho teve como principal objectivo proceder ao projecto e realização de dois sistemas de produção de perfis pultrudidos híbridos a acoplar aos equipamentos de pultrusão já instalados na ALTO – PERFIS PULTRUDIDOS, Lda. A realização de perfis pultrudidos híbridos visa melhorar as características de isolamento térmico e acústico dos tubos habitualmente feitos por pultrusão, incrementando simultaneamente a sua resistência, através da melhoria do momento de inércia do perfil, sem que haja um aumento significativo do peso do conjunto. O projecto teve como base de trabalho dois sistemas de produção completamente distintos: (a) a existência de barras de cortiça e de poliuretano (pré-formas) sobre as quais se vai efectuar a pultrusão de um tubo que abraça as barras e (b) o uso de resíduos de pultrusão como forma de enchimento dos tubos, durante o seu processo produtivo. Estes equipamentos foram projectados e parcialmente fabricados, antevendo-se que os mesmos entrem em funcionamento muito brevemente.
Resumo:
The industrialization of traditional processes relies on the scientific ability to understand the empirical evidence associated with traditional knowledge. Cork manufacturing includes one operation known as stabilization, where humid cork slabs are extensively colonized by fungi. The implications of fungal growth on the chemical quality of cork through the analysis of putative fungal metabolites have already been investigated. However, the effect of fungal growth on the mechanical properties of cork remains unexplored. This study investigated the effect of cork colonization on the integrity of the cork cell walls and their mechanical performance. Fungal colonization of cork by Chrysonilia sitophila, Mucor plumbeus Penicillium glabrum, P. olsonii, and Trichoderma longibrachiatum was investigated by microscopy. Growth occurred primarily on the surface of the cork pieces, but mycelium extended deeper into the cork layers, mostly via lenticular channels and by hyphal penetration of the cork cell wall. In this first report on cork decay in which specific correlation between fungal colonization and mechanical proprieties of the cork has been investigated, all colonizing fungi except C. sitophila, reduced cork strength, markedly altering its viscoelastic behaviour and reducing its Young’s modulus.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.