928 resultados para Maximum likelihood channel estimation algorithms
Resumo:
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.
Resumo:
This paper proposes a general class of regression models for continuous proportions when the data contain zeros or ones. The proposed class of models assumes that the response variable has a mixed continuous-discrete distribution with probability mass at zero or one. The beta distribution is used to describe the continuous component of the model, since its density has a wide range of different shapes depending on the values of the two parameters that index the distribution. We use a suitable parameterization of the beta law in terms of its mean and a precision parameter. The parameters of the mixture distribution are modeled as functions of regression parameters. We provide inference, diagnostic, and model selection tools for this class of models. A practical application that employs real data is presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we extend semiparametric mixed linear models with normal errors to elliptical errors in order to permit distributions with heavier and lighter tails than the normal ones. Penalized likelihood equations are applied to derive the maximum penalized likelihood estimates (MPLEs) which appear to be robust against outlying observations in the sense of the Mahalanobis distance. A reweighed iterative process based on the back-fitting method is proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to study the sensitivity of the MPLEs. Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering some appropriate elliptical errors. The local influence approach is used to compare the sensitivity of the model estimates.
Resumo:
Study IReal Wage Determination in the Swedish Engineering Industry This study uses the monopoly union model to examine the determination of real wages and in particular the effects of active labour market programmes (ALMPs) on real wages in the engineering industry. Quarterly data for the period 1970:1 to 1996:4 are used in a cointegration framework, utilising the Johansen's maximum likelihood procedure. On a basis of the Johansen (trace) test results, vector error correction (VEC) models are created in order to model the determination of real wages in the engineering industry. The estimation results support the presence of a long-run wage-raising effect to rises in the labour productivity, in the tax wedge, in the alternative real consumer wage and in real UI benefits. The estimation results also support the presence of a long-run wage-raising effect due to positive changes in the participation rates regarding ALMPs, relief jobs and labour market training. This could be interpreted as meaning that the possibility of being a participant in an ALMP increases the utility for workers of not being employed in the industry, which in turn could increase real wages in the industry in the long run. Finally, the estimation results show evidence of a long-run wage-reducing effect due to positive changes in the unemployment rate. Study IIIntersectoral Wage Linkages in Sweden The purpose of this study is to investigate whether the wage-setting in certain sectors of the Swedish economy affects the wage-setting in other sectors. The theoretical background is the Scandinavian model of inflation, which states that the wage-setting in the sectors exposed to international competition affects the wage-setting in the sheltered sectors of the economy. The Johansen maximum likelihood cointegration approach is applied to quarterly data on Swedish sector wages for the period 1980:1–2002:2. Different vector error correction (VEC) models are created, based on assumptions as to which sectors are exposed to international competition and which are not. The adaptability of wages between sectors is then tested by imposing restrictions on the estimated VEC models. Finally, Granger causality tests are performed in the different restricted/unrestricted VEC models to test for sector wage leadership. The empirical results indicate considerable adaptability in wages as between manufacturing, construction, the wholesale and retail trade, the central government sector and the municipalities and county councils sector. This is consistent with the assumptions of the Scandinavian model. Further, the empirical results indicate a low level of adaptability in wages as between the financial sector and manufacturing, and between the financial sector and the two public sectors. The Granger causality tests provide strong evidence for the presence of intersectoral wage causality, but no evidence of a wage-leading role in line with the assumptions of the Scandinavian model for any of the sectors. Study IIIWage and Price Determination in the Private Sector in Sweden The purpose of this study is to analyse wage and price determination in the private sector in Sweden during the period 1980–2003. The theoretical background is a variant of the “Imperfect competition model of inflation”, which assumes imperfect competition in the labour and product markets. According to the model wages and prices are determined as a result of a “battle of mark-ups” between trade unions and firms. The Johansen maximum likelihood cointegration approach is applied to quarterly Swedish data on consumer prices, import prices, private-sector nominal wages, private-sector labour productivity and the total unemployment rate for the period 1980:1–2003:3. The chosen cointegration rank of the estimated vector error correction (VEC) model is two. Thus, two cointegration relations are assumed: one for private-sector nominal wage determination and one for consumer price determination. The estimation results indicate that an increase of consumer prices by one per cent lifts private-sector nominal wages by 0.8 per cent. Furthermore, an increase of private-sector nominal wages by one per cent increases consumer prices by one per cent. An increase of one percentage point in the total unemployment rate reduces private-sector nominal wages by about 4.5 per cent. The long-run effects of private-sector labour productivity and import prices on consumer prices are about –1.2 and 0.3 per cent, respectively. The Rehnberg agreement during 1991–92 and the monetary policy shift in 1993 affected the determination of private-sector nominal wages, private-sector labour productivity, import prices and the total unemployment rate. The “offensive” devaluation of the Swedish krona by 16 per cent in 1982:4, and the start of a floating Swedish krona and the substantial depreciation of the krona at this time affected the determination of import prices.
Resumo:
Tuber borchii (Ascomycota, order Pezizales) is highly valued truffle sold in local markets in Italy. Despite its economic importance, knowledge on its distribution and population variation is scarce. The objective of this work was to investigate the evolutionary forces shaping the genetic structure of this fungus using coalescent and phylogenetic methods to reconstruct the evolutionary history of populations in Italy. To assess population structure, 61 specimens were collected from 11 different Provinces of Italy. Sampling was stratified across hosts and habitats to maximize coverage in native oak and pine stands and both mychorrizae and fruiting bodies were collected. Samples were identified considering anatomo-morphological characters. DNA was extracted and both multilocus (AFLP) and single-locus (18 loci from rDNA, nDNA, and mtDNA) approaches were used to look for polymorphisms. Screening AFLP profiles, both Jaccard and Dice coefficients of similarity were utilized to transform binary matrix into a distance matrix and then to desume Neighbour-Joining trees. Though these are only preliminary examinations, phylogenetic trees were totally concordant with those deriving from single locus analyses. Phylogenetic analyses of the nuclear loci were performed using maximum likelihood with PAUP and a combined phylogenetic inference, using Bayesian estimation with all nuclear gene regions, was carried out. To reconstruct the evolutionary history, we estimated recurrent migration, migration across the history of the sample, and estimated the mutation and approximate age of mutations in each tree using SNAP Workbench. The combined phylogenetic tree using Bayesian estimation suggests that there are two main haplotypes that are difficult to be differentiated on the basis of morphology, of ecological parameters and symbiontic tree. Between these two lineages, that occur in sympatry within T. borchii populations, there is no evidence of recurrent migration. However, migration over the history of the sample was asymmetrical suggesting that isolation was a result of interrupted gene flow followed by range expansion. Low levels of divergence between the haplotypes indicate that there are likely to be two cryptic species within the T. borchii population sampled. Our results suggest that isolation between populations of T. borchii could have led to reproductive isolation between two lineages. This isolation is likely due to sympatric speciation caused by a multiple colonization from different refugia or a recent isolation. In attempting to determinate whether these haplotypes represent separate species or a partition of the same species we applied Biological and Mechanistic species Concepts. Notwithstanding, further analyses are necessary to evaluate if selection favoured premating or post-mating isolation.
Resumo:
La ricerca proposta si pone l’obiettivo di definire e sperimentare un metodo per un’articolata e sistematica lettura del territorio rurale, che, oltre ad ampliare la conoscenza del territorio, sia di supporto ai processi di pianificazione paesaggistici ed urbanistici e all’attuazione delle politiche agricole e di sviluppo rurale. Un’approfondita disamina dello stato dell’arte riguardante l’evoluzione del processo di urbanizzazione e le conseguenze dello stesso in Italia e in Europa, oltre che del quadro delle politiche territoriali locali nell’ambito del tema specifico dello spazio rurale e periurbano, hanno reso possibile, insieme a una dettagliata analisi delle principali metodologie di analisi territoriale presenti in letteratura, la determinazione del concept alla base della ricerca condotta. E’ stata sviluppata e testata una metodologia multicriteriale e multilivello per la lettura del territorio rurale sviluppata in ambiente GIS, che si avvale di algoritmi di clustering (quale l’algoritmo IsoCluster) e classificazione a massima verosimiglianza, focalizzando l’attenzione sugli spazi agricoli periurbani. Tale metodo si incentra sulla descrizione del territorio attraverso la lettura di diverse componenti dello stesso, quali quelle agro-ambientali e socio-economiche, ed opera una sintesi avvalendosi di una chiave interpretativa messa a punto allo scopo, l’Impronta Agroambientale (Agro-environmental Footprint - AEF), che si propone di quantificare il potenziale impatto degli spazi rurali sul sistema urbano. In particolare obiettivo di tale strumento è l’identificazione nel territorio extra-urbano di ambiti omogenei per caratteristiche attraverso una lettura del territorio a differenti scale (da quella territoriale a quella aziendale) al fine di giungere ad una sua classificazione e quindi alla definizione delle aree classificabili come “agricole periurbane”. La tesi propone la presentazione dell’architettura complessiva della metodologia e la descrizione dei livelli di analisi che la compongono oltre che la successiva sperimentazione e validazione della stessa attraverso un caso studio rappresentativo posto nella Pianura Padana (Italia).
Resumo:
The advances that have been characterizing spatial econometrics in recent years are mostly theoretical and have not found an extensive empirical application yet. In this work we aim at supplying a review of the main tools of spatial econometrics and to show an empirical application for one of the most recently introduced estimators. Despite the numerous alternatives that the econometric theory provides for the treatment of spatial (and spatiotemporal) data, empirical analyses are still limited by the lack of availability of the correspondent routines in statistical and econometric software. Spatiotemporal modeling represents one of the most recent developments in spatial econometric theory and the finite sample properties of the estimators that have been proposed are currently being tested in the literature. We provide a comparison between some estimators (a quasi-maximum likelihood, QML, estimator and some GMM-type estimators) for a fixed effects dynamic panel data model under certain conditions, by means of a Monte Carlo simulation analysis. We focus on different settings, which are characterized either by fully stable or quasi-unit root series. We also investigate the extent of the bias that is caused by a non-spatial estimation of a model when the data are characterized by different degrees of spatial dependence. Finally, we provide an empirical application of a QML estimator for a time-space dynamic model which includes a temporal, a spatial and a spatiotemporal lag of the dependent variable. This is done by choosing a relevant and prolific field of analysis, in which spatial econometrics has only found limited space so far, in order to explore the value-added of considering the spatial dimension of the data. In particular, we study the determinants of cropland value in Midwestern U.S.A. in the years 1971-2009, by taking the present value model (PVM) as the theoretical framework of analysis.
Resumo:
Iterative Closest Point (ICP) is a widely exploited method for point registration that is based on binary point-to-point assignments, whereas the Expectation Conditional Maximization (ECM) algorithm tries to solve the problem of point registration within the framework of maximum likelihood with point-to-cluster matching. In this paper, by fulfilling the implementation of both algorithms as well as conducting experiments in a scenario where dozens of model points must be registered with thousands of observation points on a pelvis model, we investigated and compared the performance (e.g. accuracy and robustness) of both ICP and ECM for point registration in cases without noise and with Gaussian white noise. The experiment results reveal that the ECM method is much less sensitive to initialization and is able to achieve more consistent estimations of the transformation parameters than the ICP algorithm, since the latter easily sinks into local minima and leads to quite different registration results with respect to different initializations. Both algorithms can reach the high registration accuracy at the same level, however, the ICP method usually requires an appropriate initialization to converge globally. In the presence of Gaussian white noise, it is observed in experiments that ECM is less efficient but more robust than ICP.
Resumo:
There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.
Resumo:
In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies.
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.