968 resultados para Matabolism of Nueleic Acids Activities of Hydroiytic Enzymes
Resumo:
Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.
Resumo:
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.
Resumo:
The present study investigates the isoform(s) of cytochrome P450 (CYP) involved in the metabolism of albendazole sulfoxide (ASOX) to albendazole sulfone (ASON) in patients with neurocysticercosis using antipyrine as a multifunctional marker drug. The study was conducted on 11 patients with neurocysticercosis treated with a multiple dose regimen of albendazole for 8 days (5 mg/kg every 8 h). On the 5th day of albendazole treatment, 500 mg antipyrine was administered po. Blood and urine samples were collected up to 72 h after antipyrine administration. Plasma concentrations of (+)-ASOX, (-)-ASOX and ASON were determined by HPLC using a chiral phase column and detection by fluorescence. The apparent clearance (CL/f) of ASON and of the (+) and (-)-ASOX enantiomers were calculated and compared to total antipyrine clearance (CL T) and the clearance for the production of the three major antipyrine metabolites (CLm). A correlation (P<=0.05) was obtained only between the CL T of antipyrine and the CL/f of ASON (r = 0.67). The existence of a correlation suggests the involvement of CYP isoforms common to the metabolism of antipyrine and of ASOX to ASON. Since the CL T of antipyrine is a general measure of CYP enzymes but with a slight to moderate weight toward CYP1A2, we suggest the involvement of this enzyme in ASOX to ASON metabolism in man. The study supports the establishment of a specific marker drug of CYP1A2 in the study of the in vivo metabolism of ASOX to ASON.
Resumo:
We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.
Resumo:
In order to determine the effect of ursodeoxycholic acid on nonalcoholic fatty liver disease, 30 patients with body mass indices higher than 25, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) or gamma-glutamyltransferase (gamma-GT) at least more than 1.5 times the upper limit of normality, and hepatic steatosis demonstrated by ultrasonography were randomized into two groups of 15 patients to receive placebo or 10 mg kg-1 day-1 ursodeoxycholic acid for three months. Abdominal computed tomography was performed to quantify hepatic fat content, which was significantly correlated with histological grading of steatosis (r s = -0.83, P < 0.01). Patient body mass index remained stable for both groups throughout the study, but a significant reduction in mean (± SEM) serum levels of ALT, AST and gamma-GT was observed only in the treated group (ALT = 81.2 ± 9.7, 44.8 ± 7.7, 48.1 ± 7.7 and 52.2 ± 6.3 IU/l at the beginning and after the first, second and third months, respectively, N = 14, P < 0.05). For the placebo group ALT values were 66.4 ± 9.8, 54.5 ± 7, 60 ± 7.6 and 43.7 ± 5 IU/l, respectively. No alterations in hepatic lipid content were observed in these patients by computed tomography examination (50.2 ± 4.2 Hounsfield units (HU) at the beginning versus 51.1 ± 4.1 HU at the third month). These results show that ursodeoxycholic acid is able to reduce serum levels of hepatic enzymes in patients with nonalcoholic fatty liver disease, but this effect is not related to modifications in liver fat content.
Resumo:
The in vitro ability of Pothomorphe umbellata ethanolic crude extract to inhibit matrix metalloproteinase (MMP) in normal cornea and in cornea after alkali injury was demonstrated. Corneas of albino rabbits were injured with 1 N NaOH for 20 s. After 48 h the corneas were excised, homogenized and analyzed for MMP-9 (92 kDa), pro-MMP-2 (72 kDa) and MMP-2 (67 kDa) activity by gelatin zymography. The activity was also measured in untreated corneas. After electrophoresis of 20 µg protein, gels were incubated with 50, 100, or 250 µg/mL lyophilized hydroethanolic (1:1) root crude extract of P. umbellata standardized for 4-nerolidylcatechol (7.09%). The activity of the enzymes was compared with that of untreated gel. At 48 h after injury, the activity of all MMPs was increased compared with untreated eyes. When the gels were incubated with P. umbellata extract the activity of MMP-2, pro-MMP-2 and MMP-9 decreased in a dose-dependent manner. MMP-9 activity decreased by approximately 50% after incubation with 50 µg/mL and was completely abolished at 100 and 250 µg/mL of the extract. After incubation with 50 µg/mL the activity of pro-MMP-2 and MMP-2 also decreased by 50%. The activity of pro-MMP-2 was almost completely abolished after incubation with 250 µg/mL of the extract. For MMP-2 the incubation with 100 or 250 µg/mL of the extract of P. umbellata promoted a 10-fold decrease in activity. In conclusion, P. umbellata root crude extract can be useful as an alternative therapy to control MMP activity after corneal injury.
Resumo:
Candida albicans is an opportunistic fungal pathogen that causes severe systemic infections in immunosuppressed individuals. C. albicans resistance to antifungal drugs is a severe problem in patients receiving prolonged therapy. Moreover, trailing yeast growth, which is defined as a resistant MIC after 48 h of incubation with triazole antifungal agents but a susceptible MIC after 24 h, has been noted in tests of antifungal susceptibility against some C. albicans isolates. In this context, we recently noticed this phenomenon in our routine susceptibility tests with fluconazole/itraconazole and C. albicans clinical isolates. In the present study, we investigated the production of cell-associated and secreted aspartyl peptidases (Saps) in six trailing clinical isolates of C. albicans, since this class of hydrolytic enzymes is a well-known virulence factor expressed by this fungal pathogen. Sap2, which is the best-studied member of the Sap family, was detected by flow cytometry on the cell surface of yeasts and as a 43-kDa polypeptide in the culture supernatant, as demonstrated by Western blotting assay using an anti-Sap1-3 polyclonal antibody. Released aspartyl peptidase activity was measured with BSA hydrolysis and inhibited by pepstatin A, showing distinct amounts of proteolytic activity ranging from 5.7 (strain 44B) to 133.2 (strain 11) arbitrary units. Taken together, our results showed that trailing clinical isolates of C. albicans produced different amounts of both cellular and secreted aspartyl-type peptidases, suggesting that this phenotypic feature did not generate a regular pattern regarding the expression of Sap.
Resumo:
Variations in the estrogenic activity of the phytoestrogen-rich plant, Pueraria mirifica, were determined with yeast estrogen screen (YES) consisting of human estrogen receptors (hER) hERα and hERβ and human transcriptional intermediary factor 2 (hTIF2) or human steroid receptor coactivator 1 (hSRC1), respectively, together with the β-galactosidase expression cassette. Relative estrogenic potency was expressed by determining the β-galactosidase activity (EC50) of the tuber extracts in relation to 17β-estradiol. Twenty-four and 22 of the plant tuber ethanolic extracts interacted with hERα and hERβ, respectively, with a higher relative estrogenic potency with hERβ than with hERα. Antiestrogenic activity of the plant extracts was also determined by incubation of plant extracts with 17β-estradiol prior to YES assay. The plant extracts tested exhibited antiestrogenic activity. Both the estrogenic and the antiestrogenic activity of the tuber extracts were metabolically activated with the rat liver S9-fraction prior to the assay indicating the positive influence of liver enzymes. Correlation analysis between estrogenic potency and the five major isoflavonoid contents within the previously HPLC-analyzed tuberous samples namely puerarin, daidzin, genistin, daidzein, and genistein revealed a negative result.
Resumo:
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.
Resumo:
Alcohol dependence poses a serious medical and sociological problem. It is influenced by multiple environmental and genetic factors, which may determine differences in alcohol metabolism. Genetic polymorphism of the enzymes involved in alcohol metabolism is highly ethnically and race dependent. The purpose of this study was to investigate the differences, if present, in the allele and genotype frequency of alcohol dehydrogenase 1B (ADH1B), ADH1C and the microsomal ethanol-oxidizing system (MEOS/CYP2E1) between alcohol-dependent individuals and controls and also to determine if these genotypes cause a difference in the age at which the patients become alcohol dependent. The allele and genotype frequencies of ADH1B, ADH1C, and CYP2E1 were determined in 204 alcohol dependent men and 172 healthy volunteers who do not drink alcohol (control group). Genotyping was performed by PCR-RFLP methods on white cell DNA. ADH1B*1 (99.3%) and ADH1C*1 (62.5%) alleles and ADH1B*1/*1 (N = 201) and ADH1C*1/*1 (N = 85) genotypes were statistically more frequent among alcohol-dependent subjects than among controls (99.3 and 62.5%, N = 201 and 85 vs 94.5 and 40.7%, N = 153 and 32, respectively). Differences in the CYP2E1 allele and genotype distribution between groups were not significant. The persons with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes became alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes (28.08, 25.67 years vs 36.0, 45.05, 34.45 years, respectively). In the Polish men examined, ADH1C*1 and ADH1B*1 alleles and ADH1C*1/*1 and ADH1B*1/*1 genotypes favor alcohol dependence. The ADH1B*2 allele may protect from alcohol dependence. However, subjects with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes become alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes.
Resumo:
The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: Km (r = 0.612, P = 0.034) and Vmax (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: Km (r = -0.625, P = 0.029) and Vmax (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.
Resumo:
This study investigated the consequences of intrauterine protein restriction on the gastrointestinal tract and particularly on the gene expression and activity of intestinal disaccharidases in the adult offspring. Wistar rat dams were fed isocaloric diets containing 6% protein (restricted, n = 8) or 17% protein (control, n = 8) throughout gestation. Male offspring (n = 5-8 in each group) were evaluated at 3 or 16 weeks of age. Maternal protein restriction during pregnancy produced offspring with growth restriction from birth (5.7 ± 0.1 vs 6.3 ± 0.1 g; mean ± SE) to weaning (42.4 ± 1.3 vs 49.1 ± 1.6 g), although at 16 weeks of age their body weight was similar to control (421.7 ± 8.9 and 428.5 ± 8.5 g). Maternal protein restriction also increased lactase activity in the proximal (0.23 ± 0.02vs 0.15 ± 0.02), medial (0.30 ± 0.06vs 0.14 ± 0.01) and distal (0.43 ± 0.07vs 0.07 ± 0.02 U·g-1·min-1) small intestine, and mRNA lactase abundance in the proximal intestine (7.96 ± 1.11vs 2.38 ± 0.47 relative units) of 3-week-old offspring rats. In addition, maternal protein restriction increased sucrase activity (1.20 ± 0.02 vs 0.91 ± 0.02 U·g-1·min-1) and sucrase mRNA abundance (4.48 ± 0.51 vs 1.95 ± 0.17 relative units) in the duodenum of 16-week-old rats. In conclusion, the present study shows for the first time that intrauterine protein restriction affects gene expression of intestinal enzymes in offspring.
Resumo:
Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.
Resumo:
It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.
Resumo:
A crude extract of Spondias spp. was evaluated for the influence of pH and temperature on the activity and stability of its peroxidases and polyphenol-oxidases. In order to evaluate the conditions for the inactivation of the enzymes by heat treatment and by addition of a reducing agent, a factorial experimental design (n = 3) was employed using the Statistica (6.0) software package for data analysis. The optimal conditions found for peroxidases were: pH = 5.0 and temperature = 40 ºC, and for polyphenol-oxidases they were pH = 7.0 and temperature = 40 ºC. The peroxidases and polyphenol-oxidases were stable at all pH values tested (3.0 - 10.0) and maintained more than 60% of their activity at temperatures above 30 and 40 ºC, respectively. To achieve the total inactivation of these enzymes, two alternatives can be suggested: incubation at 92 ºC for 3.15 minutes with 200 mg.L-1 of ascorbic acid or incubation at 96 ºC for 2.80 minutes with 100 mg.L-1 of ascorbic acid.