903 resultados para Marshall and Olkin distribution
Resumo:
Caption title.
Resumo:
"April 1991."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
End-stage liver disease associated with hepatitis C virus (HCV) infection is now the leading indication for liver transplantation in adults. However, reinfection of the graft is universal. We aimed to determine predictors of outcome of HCV-Iiver transplant recipients in the Australian and New Zealand communities. The following variables were analysed: demographic factors, coexistent pathology at the time of transplantation, HCV genotype, and donor age. Outcomes measures were: 1. mortality; 2. development of HCV-related complications, which were stage 3 or 4 fibrosis, or mortality from HCV-related graft failure, or both. Between January 1989 and December 30, 1999, 182 patients were transplanted for HCV-associated cirrhosis. The median follow-up period was 4 years (range, 0 to 13 years). Genotype data were available on 157 patients. The distribution of genotypes among the 157 patients was as follows: 36 (23%) genotype la, 30 (19%) genotype 1b, 4 (9%) genotype 1, 17 (11%) genotype 2, 41 (26%) genotype 3a, and 16 (10%) genotype 4. Eight (5%) patients were HCV-polymerase chain reaction (PCR)-negative (but HCV-antibody positive). Donor age and genotype 4 were associated with an increased risk of retransplantation or death (P < .001 and.05, respectively). Meanwhile, donor age, genotype 4, and pretransplant excess alcohol were risk factors for the development of HCV-related complications (P = .004, .008, and .02, respectively). In contrast, patients with genotype 3a were less likely to develop HCV-related complications (P = .05). In a population of HCV liver transplant recipients with a heterogeneous genotype distribution, donor age, and genotype 4, were predictors of a worse outcome, whereas genotype 3 was associated with a more favorable outcome.
Resumo:
Pumicestone Passage is a narrow waterway that lies to the north of and adjacent to Moreton Bay, and between mainland Queensland and Bribie Island, Australia. Anecdotal reports have suggested that the Passage is home to dugongs year-round despite winter water temperatures that are known to cause dugongs to migrate elsewhere. To examine the pattern of distribution and abundance of dugongs within the passage on a year-round basis, eight years of sightings data collected by a charter boat operator were examined. Dedicated aerial surveys of the passage were also conducted at two-monthly intervals over two years, and more intensively over a single winter. Dugong sightings were examined in relation to water temperatures and seagrass prevalence. The number of dugongs sighted in the area on any one survey varied from 0 to 13. Dugongs were seen in all months of the year and in each of the eight winters, indicating that Pumicestone Passage is used year-round despite winter water temperatures dropping to below 18 degrees C from June to August inclusive and below 16 degrees C in June. All dugong sightings occurred in the southern part of the passage, south of Tripcony Bight. Dugongs were associated with shallows that support Halophila and Halodule species of seagrass, food species that are favoured elsewhere in their range. The northern part of the passage also supports seagrasses that are eaten by dugongs and has water temperature ranges that are not appreciably different to those of the southern passage. However, the narrow channels and very shallow nature of the northern passage provides little to no deep-water refugia for dugongs and the seagrass beds are less extensive. This study suggests that southern Pumicestone Passage requires protection concomitant with it being a year-round refuge of the vulnerable dugong.
Resumo:
Pesticides in soil are subject to a number of processes that result in transformation and biodegradation, sorption to and desorption from soil components, and diffusion and leaching. Pesticides leaching through a soil profile will be exposed to changing environmental conditions as different horizons with distinct physical, chemical and biological properties are encountered. The many ways in which soil properties influence pesticide retention and degradation need to be addressed to allow accurate predictions of environmental fate and the potential for groundwater pollution. Degradation and sorption processes were investigated in a long-term (100 days) study of the chloroacetanilide herbicide, acetochlor. Soil cores were collected from a clay soil profile and samples taken from 0-30cm (surface), 1.0-1.3m (mid) and 2.7-3.0m (deep) and treated with acetochlor (2.5, 1.25, 0.67 mu g acetochlor g(-1) dry wt soil, respectively). In sterile and non-sterile conditions, acetochlor concentration in the aqueous phase declined rapidly from the surface and subsoil layers, predominantly through nonextractable residue (NER) formation on soil surfaces, but also through biodegradation and biotic transformation. Abiotic transformation was also evident in the sterile soils. Several metabolites were produced, including acetochlor-ethane sulphonic acid and acetochlor-oxanilic acid. Transformation was principally microbial in origin, as shown by the differences between non-sterile and sterile soils. NER formation increased rapidly over the first 21 days in all soils and was mainly associated with the macroaggregate (> 2000 mu m diameter) size fractions. It is likely that acetochlor is incorporated into the macroaggregates through oxidative coupling, as humification of particulate organic matter progresses. The dissipation (ie total loss of acetochlor) half-life values were 9.3 (surface), 12.3 (mid) and 12.6 days (deep) in the non-sterile soils, compared with 20.9 [surface], 23.5 [mid], and 24 days [deep] in the sterile soils, demonstrating the importance of microbially driven processes in the rapid dissipation of acetochlor in soil.
Resumo:
The distribution of anaerobic ammonium oxidation (anammox) in nature has been addressed by only a few environmental studies, and our understanding of how anammox bacteria compete for substrates in natural environments is therefore limited. In this study, we measure the potential anammox rates in sediment from four locations in a subtropical tidal river system. Porewater profiles of NOx- (NO2- plus NO3-) and NO2- were measured with microscale biosensors, and the availability of NO2- was compared with the potential for anammox activity. The potential rate of anammox increased with increasing distance from the mouth of the river and correlated strongly with the production of nitrite in the sediment and with the average concentration or total pool of nitrite in the suboxic sediment layer. Nitrite accumulated both from nitrification and from NOx- reduction, though NOx- reduction was shown to have the greatest impact on the availability of nitrite in the suboxic sediment layer. This finding suggests that denitrification, though using NO2- as a substrate, also provides a substrate for the anammox process, which has been suggested in previous studies where microscale NO2- profiles were not measured.
Resumo:
Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% ( P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/ cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 ( P < 0.01) ( all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.
Resumo:
Iron (Fe) bioavailability in unpolished, polished grain and bran fraction of five rice genotypes with a range of Fe contents was measured by in vitro digestion and cultured Caco-2 cells of cooked grain. There was a significant difference in Fe bioavailability among the five rice genotypes tested, in both the unpolished and polished grain. The range of Fe bioavailability variation in polished rice was much wider than that of unpolished, suggesting the importance of using Fe levels and bioavailability in polished rice grain as the basis for selecting high-Fe rice cultivars for both agronomic and breeding purposes. Milling and polishing the grain to produce polished (or white) rice increased Fe bioavailability in all genotypes. Iron bioavailability in polished rice was high in the UBON2 and Nishiki, intermediate in both IR68144 and KDML105, and low in CMU122. All genotypes had low bioavailability of Fe in bran fraction compared to unpolished and polished grain, except in CMU122. CMU122 contained the lowest level of bioavailable Fe in unpolished and polished grain and bran, because of the dark purple pericarp colored grain and associated tannin content. The level of bioavailable Fe was not significantly correlated with grain Fe concentration or grain phytate levels among these five genotypes tested. The negative relationship between Fe bioavailability and the levels of total extractable phenol was only observed in unpolished (r = -0.83**) and bran fraction (r = -0.50*). The present results suggested that total extractable phenol and tannin contents could also contribute to lowering bioavailability of Fe in rice grain, in addition to phytate. (c) 2006 Society of Chemical Industry
Resumo:
Basic experiments were conducted in a near full-scale broad-crested weir. Detailed velocity and pressure measurements were performed for two configurations. The results showed the rapid flow distribution at the upstream end of the weir, while an overhanging crest design may affect the flow field. The study showed further that large vortical structures might be observed immediately upstream of the weir and impact adversely on the overflow.