911 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans are especially good at taking another's perspective-representing what others might be thinking or experiencing. This "mentalizing" capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore "common ground" when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent "test" phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3-7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corpora—large collections of written and/or spoken text stored and accessed electronically—provide the means of investigating language that is of growing importance academically and professionally. Corpora are now routinely used in the following fields: The production of dictionaries and other reference materials; The development of aids to translation; Language teaching materials; The investigation of ideologies and cultural assumptions; Natural language processing; and The investigation of all aspects of linguistic behaviour, including vocabulary, grammar and pragmatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of the cognitive process of natural language processing has been developed using the formalism of generalized nets. Following this stage-simulating model, the treatment of information inevitably includes phases, which require joint operations in two knowledge spaces – language and semantics. In order to examine and formalize the relations between the language and the semantic levels of treatment, the language is presented as an information system, conceived on the bases of human cognitive resources, semantic primitives, semantic operators and language rules and data. This approach is applied for modeling a specific grammatical rule – the secondary predication in Russian. Grammatical rules of the language space are expressed as operators in the semantic space. Examples from the linguistics domain are treated and several conclusions for the semantics of the modeled rule are made. The results of applying the information system approach to the language turn up to be consistent with the stages of treatment modeled with the generalized net.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern technology has moved on and completely changed the way that people can use the telephone or mobile to dialogue with information held on computers. Well developed “written speech analysis” does not work with “verbal speech”. The main purpose of our article is, firstly, to highlights the problems and, secondly, to shows the possible ways to solve these problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Рассмотрен подход к конспектированию ЕЯ текстов с использованием трехуровневой онтологии ассоциаций. Предложенная структура онтологии позволяет улучшить связность конспекта.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile advertising is a rapidly growing sector providing brands and marketing agencies the opportunity to connect with consumers beyond traditional and digital media and instead communicate directly on their mobile phones. Mobile advertising will be intrinsically linked with mobile search, which has transported from the internet to the mobile and is identified as an area of potential growth. The result of mobile searching show that as a general rule such search result exceed 160 characters; the dialog is required to deliver the relevant portion of a response to the mobile user. In this paper we focus initially on mobile search and mobile advert creation, and later the mechanism of interaction between the user’s request, the result of searching, advertising and dialog.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the ultimate aims of Natural Language Processing is to automate the analysis of the meaning of text. A fundamental step in that direction consists in enabling effective ways to automatically link textual references to their referents, that is, real world objects. The work presented in this paper addresses the problem of attributing a sense to proper names in a given text, i.e., automatically associating words representing Named Entities with their referents. The method for Named Entity Disambiguation proposed here is based on the concept of semantic relatedness, which in this work is obtained via a graph-based model over Wikipedia. We show that, without building the traditional bag of words representation of the text, but instead only considering named entities within the text, the proposed method achieves results competitive with the state-of-the-art on two different datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studies the application of syntagmatic analysis of written texts in the language of Brazilian Portuguese as a methodology for the automatic creation of extractive summaries. The automation of abstracts, while linked to the area of natural language processing (PLN) is studying ways the computer can autonomously construct summaries of texts. For this we use as presupposed the idea that switch to the computer the way a language is structured, in our case the Brazilian Portuguese, it will help in the discovery of the most relevant sentences, and consequently build extractive summaries with higher informativeness. In this study, we propose the definition of a summarization method that automatically perform the syntagmatic analysis of texts and through them, to build an automatic summary. The phrases that make up the syntactic structures are then used to analyze the sentences of the text, so the count of these elements determines whether or not a sentence will compose the summary to be generated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo progetto di tesi è parte di un programma più ampio chiamato TIME (Tecnologia Integrata per Mobilità Elettrica) sviluppato tra diversi gruppi di ricerca afferenti al settore meccanico, termofluidodinamico e informatico. TIME si pone l'obiettivo di migliorare la qualità dei componenti di un sistema powertrain presenti oggi sul mercato progettando un sistema general purpose adatto ad essere installato su veicoli di prima fornitura ma soprattutto su retrofit, quindi permettendo il ricondizionamento di veicoli con motore a combustione esistenti ma troppo datati. Lo studio svolto si pone l'obiettivo di identificare tutti gli aspetti di innovazione tecnologica che possono essere installati all'interno del sistema di interazione uomo-macchina. All'interno di questo progetto sarà effettuata una pianificazione di tutto il lavoro del gruppo di ricerca CIRI-ICT, partendo dallo studio normativo ed ergonomico delle interfacce dei veicoli analizzando tutti gli elementi di innovazione che potranno far parte del sistema TIME e quindi programmare tutte le attività previste al fine di raggiungere gli obiettivi prefissati, documentando opportunamente tutto il processo. Nello specifico saranno analizzate e definite le tecniche da utilizzare per poi procedere alla progettazione e implementazione di un primo sistema sperimentale di Machine Learning e Gamification con lo scopo di predire lo stato della batteria in base allo stile di guida dell'utente e incentivare quest'ultimo tramite sistemi di Gamification installati sul cruscotto ad una guida più consapevole dei consumi. Questo sistema sarà testato su dati simulati con l'obiettivo di avere un prodotto configurabile da installare sul veicolo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors thank the children, their parents and school staff, who participated in this research, and who so willingly gave us their time, help and support. They also thank Steven Knox and Alan Clelland for their work on programming the mobile phone application. Additional thanks to DynaVox Inc. for supplying the Vmax communication devices to run our system on and Sensory Software Ltd for supplying us with their AAC software. This research was supported by the Research Council UKs Digittal Economy Programme and EPSRC (Grant numbers EP/F067151/1, EP/F066880/1, EP/E011764/1, EP/H022376/1, and EP/H022570 /1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was supported by the Spanish Ministry for Economy and Competitiveness (grant TIN2014-56633-C3-1-R) and by the European Regional Development Fund (ERDF/FEDER) and the Galician Ministry of Education (grants GRC2014/030 and CN2012/151). Alejandro Ramos-Soto is supported by the Spanish Ministry for Economy and Competitiveness (FPI Fellowship Program) under grant BES-2012-051878.