857 resultados para Machine Learning,Deep Learning,Convolutional Neural Networks,Image Classification,Python
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011
Resumo:
Artificial neural networks have been used to analyze a number of engineering problems, including settlement caused by different tunneling methods in various types of ground mass. This paper focuses on settlement over shotcrete- supported tunnels on Sao Paulo subway line 2 (West Extension) that were excavated in Tertiary sediments using the sequential excavation method. The adjusted network is a good tool for predicting settlement above new tunnels to be excavated in similar conditions. The influence of network training parameters on the quality of results is also discussed. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the development and implementation of an artificial neural network based algorithm for transmission lines distance protection. This algorithm was developed to be used in any transmission line regardless of its configuration or voltage level. The described ANN-based algorithm does not need any topology adaptation or ANN parameters adjustment when applied to different electrical systems. This feature makes this solution unique since all ANN-based solutions presented until now were developed for particular transmission lines, which means that those solutions cannot be implemented in commercial relays. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
As vias de comunicação são indispensáveis para o desenvolvimento de uma nação, económica e socialmente. Num mundo globalizado, onde tudo deve chegar ao seu destino no menor espaço de tempo, as vias de comunicação assumem um papel vital. Assim, torna-se essencial construir e manter uma rede de transportes eficiente. Apesar de não ser o método mais eficiente, o transporte rodoviário é muitas vezes o mais económico e possibilita o transporte porta-a-porta, sendo em muitos casos o único meio de transporte possível. Por estas razões, o modo rodoviário tem uma quota significativa no mercado dos transportes, seja de passageiros ou mercadorias, tornando-o extremamente importante na rede de transportes de um país. Os países europeus fizeram um grande investimento na criação de extensas redes de estradas, cobrindo quase todo o seu território. Neste momento, começa-se a atingir o ponto onde a principal preocu+ação das entidades gestoras de estradas deixa de ser a construção de novas vias, passando a focar-se na necessidade de manutenção e conservação das vias existentes. Os pavimentos rodoviários, como todas as outras construções, requerem manutenção de forma a garantir bons níveis de serviço com qualidade, conforto e segurança. Devido aos custos inerentes às operações de manutenção de pavimentos, estas devem rigorosamente e com base em critérios científicos bem definidos. Assim, pretende-se evitar intervenções desnecessárias, mas também impedir que os danos se tornem irreparáveis e economicamente prejudiciais, com repercussões na segurança dos utilizadores. Para se estimar a vida útil de um pavimento é essencial realizar primeiro a caracterização estrutural do mesmo. Para isso, torna-se necessário conhecer o tipo de estrutura de um pavimento, nomeadamente a espessura e o módulo de elasticidade constituintes. A utilização de métodos de ensaio não destrutivos é cada vez mais reconhecida como uma forma eficaz para obter informações sobre o comportamento estrutural de pavimentos. Para efectuar estes ensaios, existem vários equipamentos. No entanto, dois deles, o Deflectómetro de Impacto e o Radar de Prospecção, têm demonstrado ser particularmente eficientes para avaliação da capacidade de carga de um pavimento, sendo estes equipamentos utilizados no âmbito deste estudo. Assim, para realização de ensaios de carga em pavimentos, o equipamento Deflectómetro de Impacto tem sido utilizado com sucesso para medir as deflexões à superfície de um pavimento em pontos pré-determinados quando sujeito a uma carga normalizada de forma a simular o efeito da passagem da roda de um camião. Complementarmente, para a obtenção de informações contínuas sobre a estrutura de um pavimento, o equipamento Radar de Prospecção permite conhecer o número de camadas e as suas espessuras através da utilização de ondas electromagnéticas. Os dados proporcionam, quando usados em conjunto com a realização de sondagens à rotação e poços em alguns locais, permitem uma caracterização mais precisa da condição estrutural de um pavimento e o estabelecimento de modelos de resposta, no caso de pavimentos existentes. Por outro lado, o processamento dos dados obtidos durante os ensaios “in situ” revela-se uma tarefa morosa e complexa. Actualmente, utilizando as espessuras das camadas do pavimento, os módulos de elasticidade das camadas são calculados através da “retro-análise” da bacia de deflexões medida nos ensaios de carga. Este método é iterativo, sendo que um engenheiro experiente testa várias estruturas diferentes de pavimento, até se obter uma estrutura cuja resposta seja o mais próximo possível da obtida durante os ensaios “in Situ”. Esta tarefa revela-se muito dependente da experiência do engenheiro, uma vez que as estruturas de pavimento a serem testadas maioritariamente do seu raciocínio. Outra desvantagem deste método é o facto de apresentar soluções múltiplas, dado que diferentes estruturas podem apresentar modelos de resposta iguais. A solução aceite é, muitas vezes, a que se julga mais provável, baseando-se novamente no raciocínio e experiência do engenheiro. A solução para o problema da enorme quantidade de dados a processar e das múltiplas soluções possíveis poderá ser a utilização de Redes Neuronais Artificiais (RNA) para auxiliar esta tarefa. As redes neuronais são elementos computacionais virtuais, cujo funcionamento é inspirado na forma como os sistemas nervosos biológicos, como o cérebro, processam a informação. Estes elementos são compostos por uma série de camadas, que por sua vez são compostas por neurónios. Durante a transmissão da informação entre neurónios, esta é modificada pela aplicação de um coeficiente, denominado “peso”. As redes neuronais apresentam uma habilidade muito útil, uma vez que são capazes de mapear uma função sem conhecer a sua fórmula matemática. Esta habilidade é utilizada em vários campos científicos como o reconhecimento de padrões, classificação ou compactação de dados. De forma a possibilitar o uso desta característica, a rede deverá ser devidamente “treinada” antes, processo realizado através da introdução de dois conjuntos de dados: os valores de entrada e os valores de saída pretendidos. Através de um processo cíclico de propagação da informação através das ligações entre neurónios, as redes ajustam-se gradualmente, apresentando melhores resultados. Apesar de existirem vários tipos de redes, as que aparentam ser as mais aptas para esta tarefa são as redes de retro-propagação. Estas possuem uma característica importante, nomeadamente o treino denominado “treino supervisionado”. Devido a este método de treino, as redes funcionam dentro da gama de variação dos dados fornecidos para o “treino” e, consequentemente, os resultados calculados também se encontram dentro da mesma gama, impedindo o aparecimento de soluções matemáticas com impossibilidade prática. De forma a tornar esta tarefa ainda mais simples, foi desenvolvido um programa de computador, NNPav, utilizando as RNA como parte integrante do seu processo de cálculo. O objectivo é tornar o processo de “retro-análise” totalmente automático e prevenir erros induzidos pela falta de experiência do utilizador. De forma a expandir ainda mais as funcionalidades do programa, foi implementado um processo de cálculo que realiza uma estimativa da capacidade de carga e da vida útil restante do pavimento, recorrendo a dois critérios de ruína. Estes critérios são normalmente utilizados no dimensionamento de pavimentos, de forma a prevenir o fendilhamento por fadiga e as deformações permanentes. Desta forma, o programa criado permite a estimativa da vida útil restante de um pavimento de forma eficiente, directamente a partir das deflexões e espessuras das camadas, medidas nos ensaios “in situ”. Todos os passos da caracterização estrutural do pavimento são efectuados pelo NNPav, seja recorrendo à utilização de redes neuronais ou a processos de cálculo matemático, incluindo a correcção do módulo de elasticidade da camada de misturas betuminosas para a temperatura de projecto e considerando as características de tráfego e taxas de crescimento do mesmo. Os testes efectuados às redes neuronais revelaram que foram alcançados resultados satisfatórios. Os níveis de erros na utilização de redes neuronais são semelhantes aos obtidos usando modelos de camadas linear-elásticas, excepto para o cálculo da vida útil com base num dos critérios, onde os erros obtidos foram mais altos. No entanto, este processo revela-se bastante mais rápido e possibilita o processamento dos dados por pessoal com menos experiência. Ao mesmo tempo, foi assegurado que nos ficheiros de resultados é possível analisar todos os dados calculados pelo programa, em várias fases de processamento de forma a permitir a análise detalhada dos mesmos. A possibilidade de estimar a capacidade de carga e a vida útil restante de um pavimento, contempladas no programa desenvolvido, representam também ferramentas importantes. Basicamente, o NNPav permite uma análise estrutural completa de um pavimento, estimando a sua vida útil com base nos ensaios de campo realizados pelo Deflectómetro de Impacto e pelo Radar de Prospecção, num único passo. Complementarmente, foi ainda desenvolvido e implementado no NNPav um módulo destinado ao dimensionamento de pavimentos novos. Este módulo permite que, dado um conjunto de estruturas de pavimento possíveis, seja estimada a capacidade de carga e a vida útil daquele pavimento. Este facto permite a análise de uma grande quantidade de estruturas de pavimento, e a fácil comparação dos resultados no ficheiro exportado. Apesar dos resultados obtidos neste trabalho serem bastante satisfatórios, os desenvolvimentos futuros na aplicação de Redes Neuronais na avaliação de pavimentos são ainda mais promissores. Uma vez que este trabalho foi limitado a uma moldura temporal inerente a um trabalho académico, a possibilidade de melhorar ainda mais a resposta das RNA fica em aberto. Apesar dos vários testes realizados às redes, de forma a obter as arquitecturas que apresentassem melhores resultados, as arquitecturas possíveis são virtualmente ilimitadas e pode ser uma área a aprofundar. As funcionalidades implementadas no programa foram as possíveis, dentro da moldura temporal referida, mas existem muitas funcionalidades a serem adicinadas ou expandidas, aumentando a funcionalidade do programa e a sua produtividade. Uma vez que esta é uma ferramenta que pode ser aplicada ao nível de gestão de redes rodoviárias, seria necessário estudar e desenvolver redes similares de forma a avaliar outros tipos de estruturas de pavimentos. Como conclusão final, apesar dos vários aspectos que podem, e devem ser melhorados, o programa desenvolvido provou ser uma ferramenta bastante útil e eficiente na avaliação estrutural de pavimentos com base em métodos de ensaio não destrutivos.
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.