966 resultados para MITOTIC SPINDLE
Resumo:
Cul3 (Cullin3)-based E3 ubiquitin ligases recently emerged as critical regulators of mitosis. In this study, we identify two mammalian BTB (Bric-a-brac-Tramtrack-Broad complex)-Kelch proteins, KLHL21 and KLHL22, that interact with Cul3 and are required for efficient chromosome alignment. Interestingly, KLHL21 but not KLHL22 is necessary for cytokinesis and regulates translocation of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase, similar to the previously described BTB-Kelch proteins KLHL9 and KLHL13. KLHL21 directly binds to aurora B and mediates ubiquitination of aurora B in vitro. In contrast to KLHL9 and KLHL13, KLHL21 localizes to midzone microtubules in anaphase and recruits aurora B and Cul3 to this region. Together, our results suggest that different Cul3 adaptors nonredundantly regulate aurora B during mitosis, possibly by ubiquitinating different pools of aurora B at distinct subcellular localizations.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors belonging to the nuclear hormone receptor family. While PPARs are best known as regulators of energy homeostasis, evidence also has accumulated recently for their involvement in basic cellular functions. We review novel insights into PPAR functions in skin wound healing and liver, with emphasis on PPARβ/δ and PPARα, respectively. Activation of PPARβ/δ expression in response to injury promotes keratinocyte survival, directional sensing, and migration over the wound bed. In addition, interleukin (IL)-1 produced by the keratinocytes activates PPARβ/δ expression in the underlying fibroblasts, which hinders the mitotic activity of keratinocytes via inhibition of IL-1 signaling. Initially, roles were identified for PPARα in fatty acid catabolism. However, PPARα is also involved in downregulating many genes in female mammals. We have elucidated the mechanism of this repression, which requires sumoylation of PPARα. Physiologically, this control confers protection against estrogen-induced intrahepatic cholestasis.
Resumo:
BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.
Resumo:
BACKGROUND: NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD). The DBD also contributes to homo- and heterodimerization of nuclear receptors. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET(2)). NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. CONCLUSIONS/SIGNIFICANCE: These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.
Resumo:
In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins
Resumo:
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.
Resumo:
Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.
Resumo:
Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.
Resumo:
Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.
Resumo:
Purpose: To investigate the molecular involvement of PTEN, a tumor suppressor gene, in a case of cellular pigmented choroidal Schwannoma in a patient with hamartomatous syndrome due to heterozygous PTEN germline mutation. Methods: Histopathological, immunohistochemical, and electron microscopy analyses were performed by standard procedures. Paraffin-embedded samples of normal and tumor eye tissues were collected and DNA was extracted. A 145 bp region flanking the heterozygous c.406T>C mutation in exon 5 of PTEN was amplified by PCR and sequenced. To evaluate the allelic status of PTEN in the tumor sample, we cloned different PCR products in E. coli using a TA cloning procedure. Results: Histopathology demonstrated a posterior choroidal mass measuring 1.3 x 1.6 x 1.4 cm. The tumor was composed by fascicles of spindle cells with wavy cytoplasm. No Verrocay bodies could be identified. Scattered histiocytes with clear cytoplasm were present. By immunohistochemistry, the cells were expressing S100 and focally Melan A proteins. Pericellular type IV collagen could be demonstrated. Interlacing cytoplasmic processes covered by thick basement membrane could be found by electron microscopy as well as few premelanosomes. Moderate PTEN expression by immunohistochemistry was identified in some cells. As expected, the germline mutation could be detected by DNA sequencing in both the paraffin-embedded normal and tumor eye tissues. Analysis of 33 E. coli colonies bearing clones from the tumor eye tissue DNA surprisingly revealed that most of them contained the PTEN wild-type allele (29 vs. 4, Fisher's test p-value = 0.002). Conclusions: This is the first reported case of choroidal cellular Schwannoma arising in the context of a PTEN hamartomatous syndrome. Allelic analysis of PTEN in the tumor suggests a statistically-significant partial loss of heterozygozity in favor of the wild-type allele. Our findings are in clear contrast with what is usually observed in cancer tissues, for which mutated alleles of tumor suppressor genes are usually brought to homozygosity. Similar results were previously reported in human non-Hodgkin's lymphomas, displaying an overexpression of the wild-type form of the tumor suppressor gene p53. We are in the process of investigating additional DNA derived from other fresh and paraffin-embedded tissues from the patient, in order to gain insights on the molecular bases of PTEN involvement in this rare choroidal Schwannoma.
Resumo:
These past few years, neoadjuvant strategy has taken an increasing place in the management of breast cancer patients. This strategy is mainly indicated to obtain a tumour bulk regression allowing a breast conserving surgery in patients that otherwise would have undergone mastectomy. Of note, development of new chemotherapy agents and targeted therapies has critically helped in the progress of neoadjuvant strategy as it is currently associated with better pathological response rates. In this context, the pathologist is at the crossroad of this multidisciplinary process. First, he provides on the initial core needle biopsy the tumour pathological characteristics that are critical for the choice of treatment strategy, i.e. histological type, histological grade, proliferative activity (mitotic count and Ki67/MIB1 index labeling), hormone receptor status (oestrogen receptor and progesterone receptor) and HER2 status. Secondly, the pathologist evaluates the pathological response and the status of surgical margins with regards to the residual tumour on the surgical specimen after neoadjuvant treatment. These parameters are important for the management of the patient, since it has been shown that complete pathological response is associated with improved disease free survival. Several grading systems are used to assess the pathological response in breast and axillary lymph nodes. The most frequently used in France are currently the systems described by Sataloff et al. and Chevallier et al. In this review, we detail the different steps involving the pathologist in neoadjuvant setting, with special regards to the quality process and future perspectives such as emerging predictive biomarkers.
Resumo:
Purpose: To characterize the clinical, morphological and immunohistological features of epithelial ingrowth cells after laser in situ keratomileusis (LASIK) or Automated Lamellar Therapeutic Keratoplasty (ALTK) with specific reference to current markers of corneal stem cells.Methods: Four patients were included in this interventional non-comparative case series. Full ophthalmologic examination was performed. Epithelial ingrowth specimens from 4 patients were removed surgically and immunostained for cytokeratin 3 (CK3), cytokeratin 15 (CK15), cytokeratin 19 (CK19), Muc5AC, p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 and Ki-67.Results: The time interval between LASIK/ALTK and ingrowth surgical removal was, 3, 11, 15 and 36 months. On slit lamp examination, early epithelial ingrowth appeared as whitish pearls and late epithelial ingrowth as confluent whitish opacities. Microscopically, the epithelial ingrowths showed features of a squamous non keratinizing epithelium. No mitotic figure was seen. Ki-67 labelling of 3 cases showed a proliferation index of 3-4%. Superficial squamous cells strongly expressed CK3. Expression of C/EBPδ, BCRP/ABCG2 and p63α was seen in more than 70% of cells and Bmi-1 was positive in up to 30% of cells in the specimens tested. There was no expression of CK19 or CK15.Conclusions: Epithelial ingrowths can persist for up to 3 years following LASIK surgery. They show a capacity for self-renewal and corneal differentiation. Besides, they express p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 which have been proposed as markers of stem cell phenotype. These observations suggest that post-LASIK/ALTK epithelial inclusions could derive from stem-like cells located in the peripheral corneal epithelium.
Resumo:
A conditional heat-sensitive mutation in the cdc14 gene of the fission yeast Schizosaccharomyces pombe results in failure to form a septum. Cells become highly elongated and multinucleate as growth and nuclear division continue in the absence of cell division. This article describes the cloning of the cdc14 gene and the identification of its product, a protein of 240 amino acids, p28cdc14. A null allele of the cdc14 gene shows that the gene is essential for septum formation and completion of the cell-division cycle. Overexpression of the gene product, p28cdc14, causes cell-cycle arrest in late G2 before mitosis. Cells leaking past the block activate p34cdc2 kinase and show condensed chromosomes, but the normal rearrangements of the microtubules and microfilaments that are associated with the transition from interphase to mitosis do not occur. Overexpression of p28cdc14 in mutants, in which the timing of mitosis is altered, suggests that these effects may be mediated upstream of the mitotic inhibitor wee1. These data are consistent with the idea that p28cdc14 may play a role in both the initiation of mitosis and septum formation and, by doing so, be part of the mechanism that coordinates these two cell-cycle events.
Resumo:
Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.
Resumo:
The cdc10 gene of the fission yeast S. pombe is required for traverse of the start control in late G1 and commitment to the mitotic cell cycle. To increase our understanding of the events which occur at start, a pseudoreversion analysis was undertaken to identify genes whose products may interact with cdc10 or bypass the requirement for it. A single gene, sct1+ (suppressor of cdc ten), has been identified, mutation of which suppresses all conditional alleles and a null allele of cdc10. Bypass of the requirement for cdc10+ function by sct1-1 mutations leads to pleiotropic defects, including microtubule, microfilament and nuclear structural abnormalities. Our data suggest that sct1 encodes a protein that is dependent upon cdc10+ either for its normal function or expression, or is a component of a checkpoint that monitors execution of p85cdc10 function.