873 resultados para MEYERS LOOP
Resumo:
We investigate the effects induced by excited leptons at the one-loop level in the observables measured on the Ζ peak at LEP. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to both oblique parameters and Ζ partial widths. Our results show that the new effects are comparable to the present experimental sensitivity, but they do not lead to a significant improvement on the available constraints on the couplings and masses of these states.
Resumo:
Prokineticin receptors (PROKR) are G protein-coupled receptors (GPCR) that regulate diverse biological processes, including olfactory bulb neurogenesis and GnRH neuronal migration. Mutations in PROKR2 have been described in patients with varying degrees of GnRH deficiency and are located in diverse functional domains of the receptor. Our goal was to determine whether variants in the first intracellular loop (ICL1) of PROKR2 (R80C, R85C, and R85H) identified in patients with hypogonadotropic hypogonadism interfere with receptor function and to elucidate the mechanisms of these effects. Because of structural homology among GPCR, clarification of the role of ICL1 in PROKR2 activity may contribute to a better understanding of this domain across other GPCR. The effects of the ICL1 PROKR2 mutations on activation of signal transduction pathways, ligand binding, and receptor expression were evaluated. Our results indicated that the R85C and R85H PROKR2 mutations interfere only modestly with receptor function, whereas the R80C PROKR2 mutation leads to a marked reduction in receptor activity. Cotransfection of wild-type (WT) and R80C PROKR2 showed that the R80C mutant could exert a dominant negative effect on WT PROKR2 in vitro by interfering with WT receptor expression. In summary, we have shown the importance of Arg80 in ICL1 for PROKR2 expression and demonstrate that R80C PROKR2 exerts a dominant negative effect on WT PROKR2. (Molecular Endocrinology 26: 1417-1427, 2012)
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.
Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling
Resumo:
Objective To verify the effects of exercise intensity deception by the Borg scale on the ratings of perceived exertion (RPE), heart rate (HR) and performance responses during a constant power output open-loop exercise. Methods Eight healthy men underwent a maximal incremental test on a cycle ergometer to identify the peak power output (PPO) and heart rate deflection point (HRDP). Subsequently, they performed a constant power output trial to exhaustion set at the HRDP intensity, in deception (DEC) and informed (INF) conditions: DEC-subjects were told that they would be cycling at an intensity corresponding to two categories below the RPE quantified at the HRDP; INF-subjects were told that they would cycle at the exact intensity corresponding to the RPE quantified at the HRDP. Results The PPO and power output at the HRDP obtained in maximal incremental tests were 247.5 +/- 32.1 W and 208.1 +/- 27.1 W, respectively. No significant difference in the time to exhaustion was found between DEC (525 +/- 244 s) or INF (499 +/- 224 s) trials. The slope and the first and second measurements of the RPE and HR parameters showed no significant difference between trials. Conclusions Psychophysiological variables such as RPE and HR as well as performance were not affected when exercise intensity was deceptively manipulated via RPE scores. This may suggest that unaltered RPE during exercise is a regulator of performance in this open-loop exercise.
Resumo:
We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1 + 1) dimensions, Chern-Simons theories in (2 + 1) dimensions, and non-abelian gauge theories in (2 + 1) and (3 + 1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3 + 1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012
Resumo:
Within the framework of a (1 + 1)-dimensional model which mimics high-energy QCD, we study the behavior of the cross sections for inclusive and diffractive deep inelastic gamma*h scattering cross sections. We analyze the cases of both fixed and running coupling within the mean-field approximation, in which the evolution of the scattering amplitude is described by the Balitsky-Kovchegov equation, and also through the pomeron loop equations, which include in the evolution the gluon number fluctuations. In the diffractive case, similarly to the inclusive one, suppression of the diffusive scaling, as a consequence of the inclusion of the running of the coupling, is observed.
Resumo:
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.
Resumo:
Programa de doctorado: Oceanografía
Resumo:
This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).
Resumo:
The main part of this thesis describes a method of calculating the massless two-loop two-point function which allows expanding the integral up to an arbitrary order in the dimensional regularization parameter epsilon by rewriting it as a double Mellin-Barnes integral. Closing the contour and collecting the residues then transforms this integral into a form that enables us to utilize S. Weinzierl's computer library nestedsums. We could show that multiple zeta values and rational numbers are sufficient for expanding the massless two-loop two-point function to all orders in epsilon. We then use the Hopf algebra of Feynman diagrams and its antipode, to investigate the appearance of Riemann's zeta function in counterterms of Feynman diagrams in massless Yukawa theory and massless QED. The class of Feynman diagrams we consider consists of graphs built from primitive one-loop diagrams and the non-planar vertex correction, where the vertex corrections only depend on one external momentum. We showed the absence of powers of pi in the counterterms of the non-planar vertex correction and diagrams built by shuffling it with the one-loop vertex correction. We also found the invariance of some coefficients of zeta functions under a change of momentum flow through these vertex corrections.
Resumo:
The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) ${cal O} (alpha_s^3)$ corrections to the hadroproduction of heavy quarks have raised the leading order (LO) ${cal O} (alpha_s^2)$ estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) ${cal O} (alpha_s^4)$ calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the ${cal O}(ep^2)$ expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter $ep$ up to ${cal O}(ep^{-2})$, the Laurent series of the scalar integrals has to be calculated up to ${cal O}(ep^2)$. The negative powers of $ep$ are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The ${cal O}(ep^2)$ expansion of the three- and four-point integrals contains in general classical polylogarithms up to ${rm Li}_4$ and $L$-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the $L$-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the $L$-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${cal O}(ep^2)$ results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The ${cal O}(ep^2)$ terms arise as a combination of the ${cal O}(ep^2)$ results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.