977 resultados para METABOLIC DISEASES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prevalence of obesity and type 2 diabetes has increased at an alarming rate in developed countries. It seems in the light of current knowledge that metabolic syndrome may not develop at all without NAFLD, and NAFLD is estimated to be as common as metabolic syndrome in western population (23 % occurrence). Fat in the liver is called ectopic fat, which is triacylglycerols within the cells of non-adipose tissue. Serum alanine aminotransferase (ALT) values correlate positively with liver fat proportions, and increased activity of ALT predicts type 2 diabetes independently from obesity. Berries, high in natural bioactive compounds, have indicated the potential to reduce the risk of obesity-related diseases. Ectopic fat induces common endocrine excretion of adipose tissue resulting in the overproduction of inflammatory markers, which further induce insulin resistance by multiple mechanisms. Insulin resistance inducing hyperinsulinemia and lipolysis in adipocytes increases the concentration of free fatty acids and consequently causes further fat accumulation in hepatocytes. Polyphenolic fractions of berries have been shown to reverse inflammatory reaction cascades in in vitro and animal studies, and moreover to decrease ectopic fat accumulation. The aim of this thesis was to explore the role of northern berries in obesity-related diseases. The absorption and metabolism of selected berry polyphenols, flavonol glycosides and anthocyanins, was investigated in humans, and metabolites of the studied compounds were identified in plasma and urine samples (I, II). Further, the effects of berries on the risk factors of metabolic syndrome were studied in clinical intervention trials (III, IV), and the different fractions of sea buckthorn berry were tested for their ability to reduce postprandial glycemia and insulinemia after high-glucose meal in a postprandial study with humans (V). The marked impact of mixed berries on plasma ALT values (III), as well as indications of the positive effects of sea buckthorn, its fractions and bilberry on omental adiposity and adhesion molecules (IV) were observed. In study V, sea buckthorn and its polyphenol fractions had a promising effect on potprandial metabolism after high-glucose meal. In the literature review, the possible mechanisms behind the observed effects have been discussed with a special emphasis on ectopic fat accumulation. The literature review indicated that especially tannins and flavonoids have shown potential in suppressing diverse reaction cascades related to systemic inflammation, ectopic fat accumulation and insulin resistance development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the past, oxidized low density lipoprotein (ox-LDL) has been associated with an unbeneficial lipid profile. This atherogenic lipid profile increases the risk of atherosclerotic cardiovascular diseases. Physical fitness has substantial effect on serum lipoprotein concentration as well as body composition and humoral responses, however interrelationships between ox-LDL and physical fitness have not been widely examined in a nationally representative sample. Aims: This thesis evaluates how cardiorespiratory and muscular fitness associate with ox-LDL lipids and how the other known risk factors of atherosclerosis might alter these associations. Subjects and Methods: The study cohort consisted of 846 healthy young males (mean age 25.1, SD 4.6) who were gathered by voluntary nationwide recruitment. Each participant conducted a series of physical fitness tests (cardiorespiratory and muscular fitness) and answered a detailed questionnaire that included lifestyle habits (i.e. smoking and leisuretime physical activity). Venous blood samples including ox-LDL and serum lipids were also collected. Results: Higher levels of ox-LDL were found in overweight and obese men, however, high cardiorespiratory fitness seemed to protect the overweight from high levels of ox-LDL. Young men who smoked and had poor cardiorespiratory or muscular fitness possessed a higher concentration of ox-LDL lipids when compared to comparable levels of cardiorespiratory or muscular fitness non-smoking young men. Metabolic syndrome was associated with increased levels of ox-LDL and high levels of ox-LDL combined with poor cardiorespiratory and abdominal muscle fitness seems to predict metabolic syndrome in young men. Also, participants with poor cardiorespiratory fitness and low levels of testosterone had higher levels of ox-LDL when compared to participants with high cardiorespiratory fitness / low testosterone as well as those with poor cardiorespiratory fitness / high testosterone. Conclusions: Good cardiorespiratory and muscular fitness protects young men from increased levels of ox-LDL lipids. This association was discovered in young men who were categorized as being overweight, smokers, metabolic syndrome or with low levels of testosterone. Being fit seems to prevent higher levels of ox-LDL, even in young healthy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells). The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats) in the absence of bleeding. The development of anemia was correlated (r2 = 0.86) with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01) on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC), the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability) and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Objectifs : Le syndrome métabolique (MetS) est un ensemble de composantes (obésité, résistance à l'insuline, intolérance au glucose, dyslipidémie, hypertension) qui sont associées à une augmentation du risque de diabète de type 2 et de maladies cardiovasculaires. Aux États-Unis, la fréquence du MetS atteint des proportions épidémiques avec une prévalence de 25% de la population. Les études nutritionnelles traditionnelles se sont concentrées sur l’effet d’un nutriment alors que les études plus récentes ont déterminé l’effet global de la qualité alimentaire sur les facteurs de risque. Cependant, peu d'études ont examiné la relation entre la qualité alimentaire et le MetS. Objectif: Déterminer l'association entre la qualité alimentaire et le MetS et ses composantes. Méthodes: La présence du MetS a été déterminée chez 88 femmes post-ménopausées en surpoids ou obèses, selon la définition du National Cholesterol Education Program Adult treatment Panel III alors que la qualité alimentaire a été évaluée selon le Healthy Eating Index (HEI). La sensibilité à l’insuline, la composition corporelle et le métabolisme énergétique ont été mesurés. Résultats: Le HEI corrélait négativement avec la plupart des mesures de masse grasse et du poids mais pas avec la sensibilité à l'insuline, l’hypertension et la plupart des marqueurs lipidiques. Cependant, l’HEI corrélait positivement avec LDL-C/ApoB et négativement avec le métabolisme énergétique. Conclusion: Les résultats démontrent que l’HEI est associé avec les mesures de gras corporel et la grosseur des LDL. Mots clés: Obésité, qualité alimentaire, métabolisme lipidique, syndrome métabolique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals’ adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims The Metabolic Syndrome (MetS) is associated with increased cardiovascular risk. Circulating microparticles (MP) are involved in the pathogenesis of atherothrombotic disorders and are raised in individual with CVD. We measured their level and cellular origin in subjects with MetS and analyzed their associations with 1/anthropometric and biological parameters of MetS, 2/inflammation and oxidative stress markers. Methods and results Eighty-eight subjects with the MetS according to the NCEP-ATPIII definition were enrolled in a bicentric study and compared to 27 healthy controls. AnnexinV-positive MP (TMP), MP derived from platelets (PMP), erythrocytes (ErMP), endothelial cells (EMP), leukocytes (LMP) and granulocytes (PNMP) were determined by flow cytometry. MetS subjects had significantly higher counts/μl of TMP (730.6 ± 49.7 vs 352.8 ± 35.6), PMP (416.0 ± 43.8 vs 250.5 ± 23.5), ErMP (243.8 ± 22.1 vs 73.6 ± 19.6) and EMP (7.8 ± 0.8 vs 4.0 ± 1.0) compared with controls. LMP and PNMP were not statistically different between groups. Multivariate analysis demonstrated that each criterion for the MetS influenced the number of TMP. Waist girth was a significant determinant of PMP and EMP level and blood pressure was correlated with EMP level. Glycemia positively correlated with PMP level whereas dyslipidemia influenced EMP and ErMP levels. Interestingly, the oxidative stress markers, plasma glutathione peroxydase and urinary 8-iso-prostaglandin F2 α, independently influenced TMP and PMP levels whereas inflammatory markers did not, irrespective of MP type. Conclusion Increased levels of TMP, PMP, ErMP and EMP are associated with individual metabolic abnormalities of MetS and oxidative stress. Whether MP assessment may represent a marker for risk stratification or a target for pharmacological intervention deserves further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to investigate gut development, amino acid metabolism and non-alcoholic fatty liver disease. Endoscopic therapeutic methods for upper gastrointestinal tract bleeding are being developed. Bone remodelling cycle in pigs is histologically more similar to humans than that of rats or mice, and is used to examine the relationship between menopause and osteoporosis. Work has also been conducted on dental implants in pigs to consider loading; however with caution as porcine bone remodels slightly faster than human bone. We conclude that pigs are a valuable translational model to bridge the gap between classical rodent models and humans in developing new therapies to aid human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Phenotype MicroArray (TM) (PM) technology was used to study the metabolic characteristics of 29 Salmonella strains belonging to seven serotypes of S. enterica spp. enterica. Strains of serotypes Typhimurium (six strains among definite phage types DTs 1, 40 and 104) and Agona (two strains) were tested for 949 substrates, Enteritidis (six strains of phage type PT1), Give, Hvittingfoss, Infantis and Newport strains (two of each) were tested for 190 substrates and seven other Agona strains for 95 substrates. The strains represented 18 genotypes in pulsed-field gel electrophoresis (PFGE). Among 949 substrates, 18 were identified that could be used to differentiate between the strains of those seven serotypes or within a single serotype. Unique metabolic differences between the Finnish endemic Typhimurium DT1 and Agona strains were detected, for example, in the metabolism of d-tagatose, d-galactonic acid gamma-lactone and l-proline as a carbon source. Thus, the PM technique is a useful tool for identifying potential differential markers on a metabolic basis that could be used for epidemiological surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. 1H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n = 857; age 54–91 years) and the Mid-Life in the USA study (MIDUS II; n = 1148; age 35–86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites—4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)—were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10–6). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultraperformance liquid chromatography–mass spectrometry (UPLC–MS). Both are products of concerted microbial–mammalian host cometabolism and indicate an age-related association with the balance of host–microbiome metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farmpiglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue’ for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here we show in mice that four months of pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling down-regulates Porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phophorus Magnetic Resonance Spectroscopy (31P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparβ, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Fructose is a simple carbohydrate that should be ingested in a restricted manner. However, current data suggest increased daily consumption of fructose which may lead to an increased incidence of diseases such as obesity, diabetes and co-morbidities associated with excess weight. Thus, the objective of the present study was to assess the effect of the ingestion of different fructose sources on weight gain, glycemia and serum triglyceride levels in rats.Methods: The study was conducted on male Wistar rats divided into 5 groups according to the source and concentration of fructuse (ingested ad libitum in liquid form).Results: Drink intake was increased and chow consumption was reduced in all groups compared to control (p<0.05). The animals of the groups receiving 10 and 20% fructose solutions showed increased triglyceride levels and the 20% group also showed weight gain. The exaggerate consumption of fructose promotes a reduced consumption of chow, an increase in serum triglyceride levels, and weight gain in some animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old).Methods: Animals were randomly divided into four groups: the control (C) group was kept sedentary throughout the study; the aerobic group (A) swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S) performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS) was trained using the aerobic protocol three days per week and the strength protocol two days per week.Results: Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS) and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities.Conclusions: We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two trials were carried out to test the susceptibility for metabolic disturbances of different strains of male broilers. In Trial 1, 1,890 male chickens were allotted in a randomized block design with seven treatments (Arbor Acres, Avian Farms, Cobb-500, Hubbard-Peterson, ISA, Naked Neck, and Ross) and six blocks of 45 chickens. Trial 2 involved 2,184 male chickens of six strains (Arbor Acres, Avian Farms, Cobb 500, Hubbard-Peterson, ISA Naked Neck, and Ross) allotted in seven complete blocks of 52 birds. The same management system was adopted for all birds, reared up to 42 d in an open house during late winter (Trial 1) or late autumn (Trial 2). The most marked differences observed among the strains tested was the lower BW and higher feed conversion of Naked Neck broilers. Total percentage mortalities were high among the most productive broilers, being more than 50% due to sudden death (SDS) and ascites syndrome (AS). No Naked Neck birds died as a consequence of these disturbances and the total mortalities were significantly lower (P ≤ 0.05) than the other strains. The ratio of right ventricle weight to total ventricle weight of the dead birds was over 0.25, except for Naked Neck birds, which presented a nonhypertrophic ratio. The two trials confirmed the relationship between high productivity and high incidence of SDS and AS and indicated that Naked Neck male broilers are resistant to these metabolic disturbances.