964 resultados para MEAN-FIELD THEORY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optimized delta-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the lambda phi(4) model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the delta expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two versions of the threshold contact process ordinary and conservative - are studied on a square lattice. In the first, particles are created on active sites, those having at least two nearest neighbor sites occupied, and are annihilated spontaneously. In the conservative version, a particle jumps from its site to an active site. Mean-field analysis suggests the existence of a first-order phase transition, which is confirmed by Monte Carlo simulations. In the thermodynamic limit, the two versions are found to give the same results. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional I center dot (3) theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.