960 resultados para MCM-41 type materials
Resumo:
For children with developmental dyslexia the already challenging task of learning to read is made harder by difficulties with phonological processing and perceptual distortions. As a result, these children may be less motivated to practise their literacy skills. This is problematic in that literacy can only be gained through constant and continued exposure to reading scenarios, and children who are unmotivated to practise are unlikely to develop into fluent readers. Children are active in choosing the books they read and it is therefore important to understand how the typography in those books influences their choice. Research with typically developing children has shown that they have clear opinions about the typography in their reading materials and that these opinions are likely to influence their motivation to read particular books. However, it cannot be assumed that children with reading difficulties read and respond to texts in the same way as children who do not struggle. Through case-studies of three children with reading difficulties, preferences for the typography in their reading books is examined. Looking at elements of typesetting such as spacing and size shows that this group of children is aware of differences in typography and that they have preferences for how their reading books are typeset. These children showed a preference for books that resembled those that their peers are reading rather than those that would, by typographic convention, be considered easier to read. This study is part of ongoing research into the development of alternative materials for teaching literacy skills to children with dyslexia.
Resumo:
BACKGROUND: The aim of this study was to evaluate the association of polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene and peroxisome proliferators-activated receptor gamma co-activator 1 alpha (PPARGC1A) gene with diabetic nephropathy (DN) in Asian Indians. METHODS: Six common polymorphisms, 3 of the PPARG gene [-1279G/A, Pro12Ala, and His478His (C/T)] and 3 of the PPARGC1A gene (Thr394Thr, Gly482Ser, and +A2962G) were studied in 571 normal glucose-tolerant (NGT) subjects, 255 type 2 diabetic (T2D) subjects without nephropathy, and 141 DN subjects. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing. Logistic regression analysis was performed to assess the covariables associated with DN. RESULTS: Among the 6 polymorphisms examined, only the Gly482Ser of the PPARGC1A gene was significantly associated with DN. The genotype frequency of Ser/Ser genotype of the PPARGC1A gene was 8.8% (50/571) in NGT subjects, 7.8% (20/255) in T2D subjects, and 29.8% (42/141) in DN subjects. The odds ratios (ORs) for DN for the susceptible Gly/Ser and Ser/Ser genotype after adjusting for age, sex, body mass index, and duration of diabetes were 2.14 [95% confidence interval (CI), 1.23-3.72; P = 0.007] and 8.01 (95% CI, 3.89-16.47; P < 0.001), respectively. The unadjusted OR for DN for the XA genotype of the Thr394Thr polymorphism was 1.87 (95% CI, 1.20-2.92; P = 0.006) compared to T2D subjects. However, the significance was lost (P = 0.061) when adjusted for age, sex, BMI, and duration of diabetes. The +A2962G of PPARGC1A and the 3 polymorphisms of PPARG were not associated with DN. CONCLUSION: The Gly482Ser polymorphism of the PPARGC1A gene is associated with DN in Asian Indians.
Resumo:
The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.
Resumo:
Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.
Resumo:
Biaxially oriented films produced from semi-crystalline, semi-aromatic polyesters are utilised extensively as components within various applications, including the specialist packaging, flexible electronic and photovoltaic markets. However, the thermal performance of such polyesters, specifically poly(ethylene terephthalate) (PET) and poly(ethylene-2,6-naphthalate) (PEN), is inadequate for several applications that require greater dimensional stability at higher operating temperatures. The work described in this project is therefore primarily focussed upon the copolymerisation of rigid comonomers with PET and PEN, in order to produce novel polyester-based materials that exhibit superior thermomechanical performance, with retention of crystallinity, to achieve biaxial orientation. Rigid biphenyldiimide comonomers were readily incorporated into PEN and poly(butylene-2,6-naphthalate) (PBN) via a melt-polycondensation route. For each copoly(ester-imide) series, retention of semi-crystalline behaviour is observed throughout entire copolymer composition ratios. This phenomenon may be rationalised by cocrystallisation between isomorphic biphenyldiimide and naphthalenedicarboxylate residues, which enables statistically random copolymers to melt-crystallise despite high proportions of imide sub-units being present. In terms of thermal performance, the glass transition temperature, Tg, linearly increases with imide comonomer content for both series. This facilitated the production of several high performance PEN-based biaxially oriented films, which displayed analogous drawing, barrier and optical properties to PEN. Selected PBN copoly(ester-imide)s also possess the ability to either melt-crystallise, or form a mesophase from the isotropic state depending on the applied cooling rate. An equivalent synthetic approach based upon isomorphic comonomer crystallisation was subsequently applied to PET by copolymerisation with rigid diimide and Kevlar®-type amide comonomers, to afford several novel high performance PET-based copoly(ester-imide)s and copoly(ester-amide)s that all exhibited increased Tgs. Retention of crystallinity was achieved in these copolymers by either melt-crystallisation or thermal annealing. The initial production of a semi-crystalline, PET-based biaxially oriented film with a Tg in excess of 100 °C was successful, and this material has obvious scope for further industrial scale-up and process development.
Resumo:
Voltage-dependent anion channels (VDAC) are pore-forming proteins found in the outer mitochondrial membrane of eukaryotes. VDACs are known to play an essential role in cellular metabolism and in early stages of apoptosis. In mammals, three VDAC isoforms have been identified. A proteomic approach was exploited to study the expression of VDAC isoforms in rat, bovine, and chicken brain mitochondria. Given the importance of mitochondrially bound hexokinase in regulation of aerobic glycolysis in brain, we studied the possibility that differences in the relative expression of VDAC isoforms may be a factor in determining the species-dependent ratio of type A/type B hexokinase binding sites on brain mitochondria. The spots were characterized, and the signal intensities among spots were compared. VDAC1 was the most abundantly expressed of the three isoforms. Moreover the expression of VDAC1 plus VDAC2 was significantly higher in bovine than in rat brain. Chicken brain mitochondria showed the highest VDAC1 expression and the lowest of VDAC2. Bovine brain mitochondria had the highest VDAC2 levels. We concluded that the nature of hexokinase binding site is not determined by the expression of a single VDAC isoform.
Resumo:
The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background: Microalbuminuria in Type 2 diabetes is associated with arterial endothelial dysfunction, but the venous bed was never evaluated. Aim: To study the endothelial function in the venous and arterial bed in patients with Type 2 diabetes with normoalbuminuria or microalbuminuria. Material and methods: We evaluated 28 patients with Type 2 diabetes, glycated hemoglobin (Hbak(1c)) <7.5%, who were classified as normo- (albuminuria <30 mg/24 h; no.=16) or microalbuminuric (albuminuria 30-300 mg/24 h; no.=12). Venous and arterial endothelial function were assessed by the dorsal hand vein technique (venodilation by acetylcholine) and brachial artery flow-mediated vasodilation, respectively. Results: Patients were normotensive (systolic arterial pressure: 131.1 +/- 10.6 mmHg) and on good metabolic control (HbA(1c): 6.6 +/- 0.6%). Microalbuminuric patients presented impaired venous (32.9 +/- 17.4 vs 59.3 +/- 26.5%; p=0.004) and arterial vasodilation (1.8 +/- 0.9 vs 5.1 +/- 2.4; p<0.001), as compared to normoalbuminuric patients. There was a negative correlation between acetylcholine-induced venodilation and albuminuria (r=-0.62; p<0.001) and HbA(1c) (r=-0.41; p=0.032). The same was observed between flow-mediated arterial vasodilation and albuminuria (r=-0.49; p=0.007) and HbA(1c) (r=-0.44; p=0.019). Venous and arterial vasodilation was positively correlated (r=0.50; p=0.007). Conclusions: Both venous and arterial endothelial function are impaired in Type 2 microalbuminuric diabetics, in spite of good metabolic control, suggesting that other factors are involved in its pathogenesis. (J. Endocrinol. Invest. 33: 696-700, 2010) (C) 2010, Editrice Kurtis
Resumo:
The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.
Resumo:
Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.
Resumo:
Faculty from Rhode Island School of Design representing Interior Architecture, Industrial Design, and Textiles detail their thoughtful interactions with materials.
Resumo:
Designers respond to issues and synthesize ideas from throughout the day as voices from the field who directly encounter the need for recently graduated students to possess the ability to investigate and interrogate materials.
Resumo:
Educators representing interactions with materials speak to critical approaches, life-cycle concerns, critical thinking of composition/process/properties.
Resumo:
Print No: 77