929 resultados para Lyapunov Exponent
Resumo:
The dynamic response of bed height and concentration waves in liquid-solid fluidized beds to a step change in the fluidization velocity is considered. We experimentally study the liquid-solid fluidized beds, spherical beadings, with sizes ranging from 230 to 270 mesh and the inner diameter of columns made from glass is 2.4 mm. Experimental results find that under certain conditions, fine particles with large Richardson-Zaki exponent n display different dynamic behavior from usual particles with smaller n during expansion and collapse of the fluidized state. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Based on coupled map lattice (CML), the chaotic synchronous pattern in space extend systems is discussed. Making use of the criterion for the existence and the conditions of stability, we find an important difference between chaotic and nonchaotic movements in synchronization. A few numerical results are presented.
Resumo:
A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid hows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid hows can be envisaged.
Resumo:
In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.
Resumo:
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.
Resumo:
This paper presents an asymptotic analysis of the near-tip stress and strain fields of a sharp V-notch in a power law hardening material. First, the asymptotic solutions of the HRR type are obtained for the plane stress problem under symmetric loading. It is found that the angular distribution function of the radial stress sigma(r) presents rapid variation with the polar angle if the notch angle beta is smaller than a critical notch angle; otherwise, there is no such phenomena. Secondly, the asymptotic solutions are developed for antisymmetric loading in the cases of plane strain and plane stress. The accurate calculation results and the detailed comparisons are given as well. All results show that the singular exponent s is changeable for various combinations of loading condition and plane problem.
Resumo:
Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.
Resumo:
This paper points out that viscosity can induce mode splitting in a uniform infinite cylinder of an incompressible fluid with self-gravitation, and that the potential energy criterion cannot be appropriate to all normal modes obtained, i.e., there will be stable modes with negative potential energy (<0). Therefore the condition >0 is not necessary, although sufficient, for the stability of a mode in an incompressible static fluid or magnetohydrodynamics (MHD) system, which is a correction of both Hare's [Philos. Mag. 8, 1305 (1959)] and Chandrasekhar's [Hydrodynamic and Hydromagnetic Stability (Oxford U.P., Oxford, 1961), p. 604] stability criterion for a mode. These results can also be extended to compressible systems with a polytropic exponent.
Resumo:
The Columbus problem has been rigorously solved by Lyapunov's direct approach to the continuous system in gencral cases of large disturbance and the theory has proved to be in strict consistency with Kelvin's experiments.
Resumo:
In this paper, we first present a system of differential-integral equations for the largedisturbance to the general case that any arbitrarily shaped solid body with a cavity contain-ing viscous liquid rotates uniformly around the principal axis of inertia, and then develop aweakly non-linear stability theory by the Lyapunov direct approach. Applying this theoryto the Columbus problem, we have proved the consistency between the theory and Kelvin'sexperiments.
Resumo:
The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a sliding mode control for variable speed wind turbine that incorporates a doubly fed induction generator is described. The electrical system incorporates a wound rotor induction machine with back-to-back three phase power converter bridges between its rotor and the grid. In the presented design the so-called vector control theory is applied, in order to simplify the electrical equations. The proposed control scheme uses stator flux-oriented vector control for the rotor side converter bridge control and grid voltage vector control for the grid side converter bridge control. The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand, that the proposed controller provides high-performance dynamic characteristics, and on the other hand, that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
Modern wind turbines are designed in order to work in variable speed opera-tions. To perform this task, these turbines are provided with adjustable speed generators, like the double feed induction generator (DFIG). One of the main advantages of adjustable speed generators is improving the system efficiency compared with _xed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However, this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. The proposed design also uses the vector oriented control theory in order to simplify the DFIG dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and pa-rameter uncertainties using the Lyapunov stability theory. Finally, the simulated results show on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, which usually appear in real systems.
Resumo:
A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11