900 resultados para Linear Matrix Inequalities
Resumo:
This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.
Resumo:
Strengthening cooperation between schools and parents is critical to improving learning outcomes for children. The chapter focuses on parental engagement in their children’s education in the early years of school. It considers issues of social and cultural capital as important to whether, or not, parents are involved in their children’s schooling. Analyses of data from a national representative sample of children and their families who participate in Growing up in Australia: The Longitudinal Study of Australian Children are presented. Results indicated that higher family socio-economic position was associated with higher levels of parental involvement and higher expectations about children’s future level of education.
Resumo:
Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.
Resumo:
In this paper, we consider the following non-linear fractional reaction–subdiffusion process (NFR-SubDP): Formula where f(u, x, t) is a linear function of u, the function g(u, x, t) satisfies the Lipschitz condition and 0Dt1–{gamma} is the Riemann–Liouville time fractional partial derivative of order 1 – {gamma}. We propose a new computationally efficient numerical technique to simulate the process. Firstly, the NFR-SubDP is decoupled, which is equivalent to solving a non-linear fractional reaction–subdiffusion equation (NFR-SubDE). Secondly, we propose an implicit numerical method to approximate the NFR-SubDE. Thirdly, the stability and convergence of the method are discussed using a new energy method. Finally, some numerical examples are presented to show the application of the present technique. This method and supporting theoretical results can also be applied to fractional integrodifferential equations.
Resumo:
Background: While the relationship between socioeconomic disadvantage and cardiovascular disease (CVD) is well established, the role that traditional cardiovascular risk factors play in this association remains unclear. We examined the association between education attainment and CVD mortality and the extent to which behavioural, social and physiological factors explained this relationship. Methods: Adults (n=38 355) aged 40-69 years living in Melbourne, Australia were recruited in 1990-1994. Subjects with baseline CVD risk factor data ascertained through questionnaire and physical measurement were followed for an average of 9.4 years with CVD deaths verified by review of medical records and autopsy reports. Results: CVD mortality was higher for those with primary education only compared to those who had completed tertiary education, with a hazard ratio (HR) of 1.66 (95% confidence interval [CI] 1.11-2.49) after adjustment for age, country of birth and gender. Those from the lowest educated group had a more adverse cardiovascular risk factor profile compared to the highest educated group, and adjustment for these risk factors reduced the HR to 1.18 (95% CI 0.78-1.77). In analysis of individual risk factors, smoking and waist circumference explained most of the difference in CVD mortality between the highest and lowest education groups. Conclusions: Most of the excess CVD mortality in lower socioeconomic groups can be explained by known risk factors, particularly smoking and overweight. While targeting cardiovascular risk factors should not divert efforts from addressing the underlying determinants of health inequalities, it is essential that known risk factors are addressed effectively among lower socioeconomic groups.
Resumo:
Cooking skills are emphasized in nutrition promotion but their distribution among population subgroups and relationship to dietary behavior is researched by few population-based studies. This study examined the relationships between confidence to cook, sociodemographic characteristics, and household vegetable purchasing. This cross-sectional study of 426 randomly selected households in Brisbane, Australia, used a validated questionnaire to assess household vegetable purchasing habits and the confidence to cook of the person who most often prepares food for these households. The mutually adjusted odds ratios (ORs) of lacking confidence to cook were assessed across a range of demographic subgroups using multiple logistic regression models. Similarly, mutually adjusted mean vegetable purchasing scores were calculated using multiple linear regression for different population groups and for respondents with varying confidence levels. Lacking confidence to cook using a variety of techniques was more common among respondents with less education (OR 3.30; 95% confidence interval [CI] 1.01 to 10.75) and was less common among respondents who lived with minors (OR 0.22; 95% CI 0.09 to 0.53) and other adults (OR 0.43; 95% CI 0.24 to 0.78). Lack of confidence to prepare vegetables was associated with being male (OR 2.25; 95% CI 1.24 to 4.08), low education (OR 6.60; 95% CI 2.08 to 20.91), lower household income (OR 2.98; 95% CI 1.02 to 8.72) and living with other adults (OR 0.53; 95% CI 0.29 to 0.98). Households bought a greater variety of vegetables on a regular basis when the main chef was confident to prepare them (difference: 18.60; 95% CI 14.66 to 22.54), older (difference: 8.69; 95% CI 4.92 to 12.47), lived with at least one other adult (difference: 5.47; 95% CI 2.82 to 8.12) or at least one minor (difference: 2.86; 95% CI 0.17 to 5.55). Cooking skills may contribute to socioeconomic dietary differences, and may be a useful strategy for promoting fruit and vegetable consumption, particularly among socioeconomically disadvantaged groups.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Botanical matrix is a graphic map produced via a process involving an initial site installation (350 m contour transect), a botanical survey and photographic documentation of species. The site is a housing subdivision at Point Henry, on the SE coast of Western Australia which is a landscape which is host the most botanically diverse vegetation found worldwide - known locally as 'kwongan'. Notoriously difficult vegetation to measure and map, kwongan is a visual 'engima', for paradoxically it appears to the lay person as visually bland and highly homogenous. There is thus is a critical need for the development of new forms of representation which overcome the barriers between the perception and reality of this botanical condition. Botanical Matrix is one result of the author's research which seeks to address this important problem.
Resumo:
There is a need in industry for a commodity polyethylene film with controllable degradation properties that will degrade in an environmentally neutral way, for applications such as shopping bags and packaging film. Additives such as starch have been shown to accelerate the degradation of plastic films, however control of degradation is required so that the film will retain its mechanical properties during storage and use, and then degrade when no longer required. By the addition of a photocatalyst it is hoped that polymer film will breakdown with exposure to sunlight. Furthermore, it is desired that the polymer film will degrade in the dark, after a short initial exposure to sunlight. Research has been undertaken into the photo- and thermo-oxidative degradation processes of 25 ìm thick LLDPE (linear low density polyethylene) film containing titania from different manufacturers. Films were aged in a suntest or in an oven at 50 °C, and the oxidation product formation was followed using IR spectroscopy. Degussa P25, Kronos 1002, and various organic-modified and doped titanias of the types Satchleben Hombitan and Hunstsman Tioxide incorporated into LLDPE films were assessed for photoactivity. Degussa P25 was found to be the most photoactive with UVA and UVC exposure. Surface modification of titania was found to reduce photoactivity. Crystal phase is thought to be among the most important factors when assessing the photoactivity of titania as a photocatalyst for degradation. Pre-irradiation with UVA or UVC for 24 hours of the film containing 3% Degussa P25 titania prior to aging in an oven resulted in embrittlement in ca. 200 days. The multivariate data analysis technique PCA (principal component analysis) was used as an exploratory tool to investigate the IR spectral data. Oxidation products formed in similar relative concentrations across all samples, confirming that titania was catalysing the oxidation of the LLDPE film without changing the oxidation pathway. PCA was also employed to compare rates of degradation in different films. PCA enabled the discovery of water vapour trapped inside cavities formed by oxidation by titania particles. Imaging ATR/FTIR spectroscopy with high lateral resolution was used in a novel experiment to examine the heterogeneous nature of oxidation of a model polymer compound caused by the presence of titania particles. A model polymer containing Degussa P25 titania was solvent cast onto the internal reflection element of the imaging ATR/FTIR and the oxidation under UVC was examined over time. Sensitisation of 5 ìm domains by titania resulted in areas of relatively high oxidation product concentration. The suitability of transmission IR with a synchrotron light source to the study of polymer film oxidation was assessed as the Australian Synchrotron in Melbourne, Australia. Challenges such as interference fringes and poor signal-to-noise ratio need to be addressed before this can become a routine technique.
Resumo:
Purpose: Poor image quality in the peripheral field may lead to myopia. Most studies measuring the higher order aberrations in the periphery have been restricted to the horizontal visual field. The purpose of this study was to measure higher order monochromatic aberrations across the central 42º horizontal x 32º vertical visual fields in myopes and emmetropes. ---------- Methods: We recruited 5 young emmetropes with spherical equivalent refractions +0.17 ± 0.45D and 5 young myopes with spherical equivalent refractions -3.9 ± 2.09D. Measurements were taken with a modified COAS-HD Hartmann-Shack aberrometer (Wavefront Sciences Inc). Measurements were taken while the subjects looked at 38 points arranged in a 7 x 6 matrix (excluding four corner points) through a beam splitter held between the instrument and the eye. A combination of the instrument’s software and our own software was used to estimate OSA Zernike coefficients for 5mm pupil diameter at 555nm for each point. The software took into account the elliptical shape of the off-axis pupil. Nasal and superior fields were taken to have positive x and y signs, respectively. ---------- Results: The total higher order RMS (HORMS) was similar on-axis for emmetropes (0.16 ± 0.02 μm) and myopes (0.17 ± 0.02 μm). There was no common pattern for HORMS for emmetropes across the visual field where as 4 out of 5 myopes showed a linear increase in HORMS in all directions away from the minimum. For all subjects, vertical and horizontal comas showed linear changes across the visual field. The mean rate of change of vertical coma across the vertical meridian was significantly lower (p = 0.008) for emmetropes (-0.005 ± 0.002 μm/deg) than for myopes (-0.013 ± 0.004 μm/deg). The mean rate of change of horizontal coma across the horizontal meridian was lower (p = 0.07) for emmetropes (-0.006 ± 0.003 μm/deg) than myopes (-0.011 ± 0.004 μm/deg). ---------- Conclusion: We have found differences in patterns of higher order aberrations across the visual fields of emmetropes and myopes, with myopes showing the greater rates of change of horizontal and vertical coma.
Resumo:
Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.