869 resultados para Light - Physiological effect
Resumo:
This poster aims to identify the role that socioeconomic status plays in determining poor health outcomes in pregnancy and childbirth. It brings to light the limitations and complications that a person in a lower socioeconomic society may face, and the effect that this possibly has on the health of the mother and child. A review of the peer reviewed literature was undertaken which identified three key areas relating to pregnancy in lower socioeconomic areas. These were social and emotional matters, lifestyle factors and financial issues. Particular focus has been put on understanding these issues from a paramedic perspective and how this can assist in both the treatment and education of patients in the pre-hospital environment. While there has been sufficient research into the three individual areas highlighted in the literature which affect pregnant patients living in lower socioeconomic communities, this poster has drawn these topics together to create an overview of a subject which is complex and multifaceted.
Resumo:
Embedding metallic nanoparticles in organic solar cells can enhance the photoabsorption through light trapping processes. This paper investigates how gold islands obtained by annealing 1–5 nm thick Au layers affect the photoabsorption. Using finite-difference time-domain simulations, the cell efficiency for various island geometries and thicknesses are analyzed and the properties of the islands for maximal photocurrent are discussed. It is shown that a careful choice of size and concentration of gold islands could contribute to enhance the power conversion efficiencies when compared to standard organic solar cell devices. The conclusions are then compared to experimental data for thermally annealed gold islands in bulk heterojunction solar cells. The results of this paper will contribute to the optimization of plasmonic organic solar cell systems and will pave the way for the development of highly efficient organic solar cell devices.
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
Cold water immersion and ice baths are popular methods of recovery used by athletes. From the simple wheelie bin with water and ice, to the inflatable baths with complex water cooling units to recovery sessions in the ocean, the practice of cold water immersion is wide and varied. Research into cold water immersion was conducted as early as 1963 when Clarke1 examined the influence of cold water on performance recovery after a sustained handgrip exercise. Research has been conducted to understand how cold water immersion might affect the body’s physiological systems and how factors such as water temperature and the duration of immersion might enhance recovery after training and/or competition. Despite this research activity, how are we to know if research is being put into practice? In more serious situations, where guidelines and policies need to be standardised for the safe use of a product, one would expect that there is a straight forward follow-on from research into practice. Although cold water immersion may not need the rigor of testing compared to drug treatments, for example, the decision on whether to use cold water immersion in specific situations (e.g. after training or competition) may rest with one or two of the staff associated with the athlete/team. Therefore, it would be expected that these staff are well-informed on the current literature regarding cold water immersion.
Resumo:
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Resumo:
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Resumo:
Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm−2) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene.
Resumo:
The application of decellularized extracellular matrices to aid tissue regeneration in reconstructive surgery and regenerative medicine has been promising. Several decellularization protocols for removing cellular materials from natural tissues such as heart valves are currently in use. This paper evaluates the feasibility of potential extension of this methodology relative to the desirable properties of load bearing joint tissues such as stiffness, porosity and ability to recover adequately after deformation to facilitate physiological function. Two decellularization protocols, namely: Trypsin and Triton X-100 were evaluated against their effects on bovine articular cartilage, using biomechanical, biochemical and microstructural techniques. These analyses revealed that decellularization with trypsin resulted in severe loss of mechanical stiffness including deleterious collapse of the collagen architecture which in turn significantly compromised the porosity of the construct. In contrast, triton X-100 detergent treatment yielded samples that retain mechanical stiffness relative to that of the normal intact cartilage sample, but the resulting construct contained ruminant cellular constituents. We conclude that both of these common decellularization protocols are inadequate for producing constructs that can serve as effective replacement and scaffolds to regenerate articular joint tissue.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.
Resumo:
The aim of the present work was to investigate whether the hypocholesterolemic effect of polyunsaturated oils is due to inhibition of cholesterol synthesis or increased excretion of cholesterol and bile acids through the bile and feces of animals. Separate groups of rats were fed diets containing 10% safflower oil, coconut oil or hydrogenated vegetable oils for 30 days, after which the hepatic cholesterol and bile acid synthesis and their excretion through the bile and feces were studied. As compared to the rats in the other two groups, those given the diet containing 10% safflower oil showed markedly increased rates of bile flow and excreted through their bile and feces markedly higher amounts of cholesterol and bile acids. At the same time incorporation of [1-14C] acetate and [2-14C] mevalonate into the liver cholesterol and conversion of [4-14C] cholesterol into 14C-bile acids were also higher in the same rats. In the light of these observations it has been discussed that in the animals given polyunsaturated oils, biliary and fecal loss of cholesterol and bile acids far outweighs the activation of cholesterol synthesis and thereby effectively lowers the serum cholesterol levels.
Resumo:
In recent years many sorghum producers in the more marginal (<600 mm annual rainfall) cropping areas of Qld and northern NSW have utilised skip row configurations in an attempt to improve yield reliability and reduce sorghum production risk. But will this work in the long run? What are the trade-offs between productivity and risk of crop failure? This paper describes a modelling and simulation approach to study the long-term effects of skip row configurations. Detailed measurements of light interception and water extraction from sorghum crops grown in solid, single and double skip row configurations were collected from three on-farm participatory research trials established in southern Qld and northern NSW. These measurements resulted in changes to the model that accounted for the elliptical water uptake pattern below the crop row and reduced total light interception associated with the leaf area reduction of the skip configuration. Following validation of the model, long-term simulation runs using historical weather data were used to determine the value of skip row sorghum production as a means of maintaining yield reliability in the dryland cropping regions of southern Qld and northern NSW.
Resumo:
Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETRmax), photosynthetic efficiency (?), saturating irradiance (Ek) and effective quantum yield (?F/Fm?) were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETRmax and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETRmax, Ek and ?F/Fm? were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.
Resumo:
SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.