489 resultados para Ligas de niquel
Resumo:
The present work aims to study the characteristics of the alloy Al - 7 % Si - 0 , 3Mg ( AA356 ) , more specifically characterize the macrostructure and microstructure and mechanical properties of the alloy ingots AA356 obtained in metal molds and sand molds for power studying the structures through the difference of cooling rates . This alloy is explained by the fact of referring league has excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability , high wear resistance , high strength to weight ratio, has wide application in general engineering , and particularly in the automotive and aerospace engineering . In this work we will verify this difference in properties through two different cooling rates . We monitor the solid solidification temperatures by thermocouples building with them the cooling curve as a tool that will aid us to evaluate the effectiveness of the grain refining because it achieved with some important properties of the alloy as the latent heat of solidification fraction the liquid and solid temperatures, the total solidification time, and identify the presence of inoculants for grain refinement. Thermal analysis will be supported by the study of graphic software “Origin “will be achieved where the cooling curve and its first derivative that is the cooling rate. Made thermal analysis, analysis will be made in macrographs ingots obtained for observation of macrostructures obtained in both types of ingots and also analysis of micrographs where sampling will occur in strategic positions ingots to correlate with the microstructure. Finally will be collecting data from Brinell hardness of ingots and so then correlating the properties of their respective ingots with cooling rate. We found that obtained with cast metal ingots showed superior properties to the ingots obtained with sand mold
Resumo:
The objective of the present work was to evaluate surface of experimental alloy Ti-7.5Mo after hydrothermal treatment. Ingots were obtained in arc melting furnace under an argon atmosphere and then homogenized under vacuum at 1100ºC for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting and grinding. For surface treatment, samples were immersed in a container with NaOH aqueous solution 5M, autoclaved, washed with distilled water. Followed, samples were heat treated and they were soaking in 5xSBF to form an apatite layer on the surface. Surfaces were investigated by, scanning electron microscopy, X-Rays powder diffraction, atomic force microscopy and contact angle, in order to evaluate the wettability of the alloy surface. The results were compared with our previous studies using the group of chemical surface treatments and results shows better condition is 120 minutes in the autoclave
Resumo:
As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece
Resumo:
It is very important to study the macrostructure of a material in the crude state of solidification due to influence the mechanical properties, as well as the study of their cooling curve. In the present work was to study the alloy AA 356, its macrostructure and its cooling curve. The material was cast in two different molds, a sand and other metallic. In this paper we study the differences in its macrostructure and its cooling curves. In macrostructure can observe the absence of the three zones of solidification and the presence of large pores because of moisture in the sand. In the sample taken from the metal mold can observe the three zones of solidification: a coquilhada, columnar and equiaxed
Resumo:
To verify the levels of concentration of some heavy metals in fishes from Sorocaba river (São Paulo, Brazil) and evaluate if this contamination offers health risks to the fishermen, 63 samples of fishes collected from four points along the river were studied for cadmium, lead, chromium, nickel and mercury, with emphasis in this last, since it is the most toxic and most probable as a fish contaminant. Analyzing muscle samples by cold vapor atomic absorption spectrometry it was shown that the fishes are not contaminated. None of the five metals studied were present in prohibitive level and the fishes could be judged secure for human consume. It was also analyzed data from four years of cadmium, lead, chromium, nickel and mercury monitoring made by CETESB, from 1997 to 2000, in water from the main rivers of the State of São Paulo. The study pointed out that the majority of the monitored rivers still present contamination by those metals in a level that requires an improvement of the pollution control actions.
Resumo:
Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours
Resumo:
The aluminum includes several properties with excellent relation between weight and mechanical resistance. With technological advances, increasingly demand the development of new alloys and other production processes in order to reduce the cost of production and insert these new alloys in broader applications. The process of continuous caster (TRC promoted the unite of the aluminum smelting process with the first stage of rolling, making it most economical through the merger these two phases besides transform the continuous casting process. The AA8xxx series is one of the most versatile aluminum alloys and the most often used in continuous caster process provided a great potential application in the market. In order to further, optimize the process it is necessary to increase awareness of the aluminum solidification phenomena associated with the addition of grain refiner, and control of some aluminum production parameters in the process (production rate, metal temperature, etc.). In this study, AA8011 alloy samples were taken in the raw state obtained by the continuous casting process. The samples were laminated to a thickness of 7mm during the process itself and analyzed at three points along its width by microstructural analysis throughout its thickness, the variation rate of addition of the grain refiner in order to assess the influence of this addition with crystallographic formation and some formation of intermetallic precipitates during the solidification. Through this work, it was possible to improve the knowledge related to the addition of refiner with the monitoring of these production processes
Resumo:
The aluminium alloys are used in many fields because of their versatility combined with the excellent aluminium’s properties, mentioned in the study. This study aims to compare the performance of polished Hard Metal, Hard Metal covered with TiB2 and High Speed Steel (HSS) tools, at the aluminium 2024 alloy’s turning, as a function of variation of some turning parameters such as: feed, depth of cut and cutting speed; and study the surface finish and the required power during turning by processing the output data, like analyze the chip’s features for each used tool. The results provide information of the tool’s material effects, when submitted to different turning conditions, about the output variable in question. In this way, it was possible to notice that although the Hard Metal covered with TiB2 tool has provided the better surface finish, the chip’s features were better when the turning was accomplished by the Polished Hard Metal tool. In relation to the required turning’s power, the lowest consumption occurred with the High Speed Steel tool
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
This work approaches the main methods of plastic deformation of metals, with a focus on the deep drawing process. The mechanical properties were evaluated with the tension tests. It is presented the aluminum alloys designation, followed by applying heat treatments and the designation of tempers. The manufacture of aluminum beverage cans is described step by step, in general terms. The main objective is to analyze how different cans background geometries have great influence on the dome reversal. To be able to achieve the goal it was necessary to use cans of different manufacturers, which were used in buckle tests to obtain the reversal pressures, tensile tests and geometric analysis. Finally empirical equations were obtained correlating these variables, and it was observed that the conformation of reforming change significantly it's behavior
Resumo:
The industry generally has sought materials with high mechanical resistance, low density, thermal stability and corrosion resistance. In the aerospace industry, for example, the use of aluminum alloys, such as Al 2024-T351 and Al 7075-T7351, have become essential. However, the use of these materials often do not resulted in a satisfactory performance of the component, since the presence of cracks can cause total rupture of the component, even with a tension below the yield stress of the material, unexpectedly. In this work, these aluminum alloys were analyzed and samples were modeled by the finite element method. Moreover, in the models were applied two different types of cracks, central and edge crack, a vertical force was applied to result in a tension 70% of the yield stress of the material analyzed. Through stress asymptotic distribution in the region near the crack tip were calculated the values of the stress intensity factors for each crack length, after the stress intensity factors characterized were compared graphically with the values of fracture toughness found in the available literature