907 resultados para Life stages
Resumo:
Many endoparasitic wasps inject, along with the egg, polydnavirus into their insect hosts, the virus being a prerequisite for successful parasitoid development. The genome of polydnaviruses consists of multiple circular dsDNA molecules of variable size. We show for a 12 kbp segment of the braconid Chelonus inanitus (CiV12) that it is integrated into the wasp genome. This is the first direct demonstration of integration for a bracovirus. PCR data indicated that the integrated form of CiV12 was present in all male and female stages investigated while the excised circular virus DNA only appeared in females after a specific stage in pupal-adult development. The data also indicated that after excision of virus DNA the genomic DNA was rejoined. This has not yet been reported for any polydnavirus. Sequence analyses in the junction regions revealed the presence of an imperfect consensus sequence of 15 nucleotides in CiV12, in each terminus of the integrated virus DNA and in the rejoined genomic DNA. Within these repeats two sequence types (ATA, TAC) were observed in the various virus clones and in the clones encompassing the rejoined genomic DNA; they corresponded to the sequence type in the right and left junction, respectively. To explain this, we propose a model of virus DNA replication in which the genomic DNA is folded to juxtapose the direct repeat of the left with that of the right junction; recombination at specific sites would then yield the two types of virus and rejoined genomic DNA.
Resumo:
BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Resumo:
Beginning in the late 1980s, lobster (Homarus americanus) landings for the state of Maine and the Bay of Fundy increased to levels more than three times their previous 20-year means. Reduced predation may have permitted the expansion of lobsters into previously inhospitable territory, but we argue that in this region the spatial patterns of recruitment and the abundance of lobsters are substantially driven by events governing the earliest life history stages, including the abundance and distribution of planktonic stages and their initial settlement as Young-of-Year (YOY) lobsters. Settlement densities appear to be strongly driven by abundance of the pelagic postlarvae. Postlarvae and YOY show large-scale spatial patterns commensurate with coastal circulation, but also multi-year trends in abundance and abrupt shifts in abundance and spatial patterns that signal strong environmental forcing. The extent of the coastal shelf that defines the initial settlement grounds for lobsters is important to future population modeling. We address one part of this definition by examining patterns of settlement with depth, and discuss a modeling framework for the full life history of lobsters in the Gulf of Maine.
Resumo:
The objectives of this dissertation were to determine the quality of life in women with ovarian cancer and the association of their physical and emotional well-being with the number of symptoms, duration of symptoms, and the scores of common symptoms of ovarian cancer; to study the prevalence of complementary and alternative medicine techniques for symptom relief and its association with the number of symptoms, age, education, insurance, comorbidity, and satisfaction with medical care they received, and their pre-diagnostic experience of symptoms.^ This study was based on a secondary data analysis of a study of early detection of ovarian cancer. A sample of 139 women with ovarian cancer was recruited and was administered a questionnaire comprised of questions on their quality of life, their symptoms and what they did about the symptoms, whether they used any complementary and alternative medicine techniques, and other medical conditions they had. Out of this sample, 53 patients underwent in-depth interviews relating to their symptoms before the diagnosis and their experiences with the health care system leading to the ovarian cancer diagnosis. ^ In article #1, ovarian cancer patients were observed to have significantly poorer quality of life on all subscales and summary scores except pain, compared to that of the general population of US women. Physical well-being scores were negatively associated with the number of symptoms before diagnosis and a significant negative association of comorbidity index was observed with physical well-being. Higher education and increase in time since diagnosis was found to have better physical scores. Emotional well-being scores showed marginally significant associations with number of symptoms and bloating. ^ In article #2, a thematic content analysis of the ovarian cancer patients’ interviews revealed that on recognition of their symptoms women first assumed their symptoms to be a normal transient occurrence due to a pre-existing disease condition, or due to some other disease. A series of misattributions of their symptoms on their and their doctors’ part impacted their health care seeking.In article #3, a significantly greater likelihood of CAM use with an increase in the number of symptoms was observed.^ Based on the foregoing results, it is important to educate women on possible signs of ovarian cancer and also to educate doctors about the results of current research regarding ovarian cancer diagnosis. This will help to avoid a delay in getting a diagnosis and improve women’s quality of life. It emphasizes the diagnosis of ovarian cancer in earlier stages by more sensitive screening techniques. This study emphasizes the importance of consideration of comorbidity in any quality of life research. Additionally, educating women in the safe use of CAM techniques carries immense significance because the efficacy and safety of many of the currently advertized CAM products has not been scientifically validated. Further research is needed to confirm the findings of this study. ^
Resumo:
An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared in current day control (450 µatm) and two elevated CO2 treatments for a total of 6 d, from 12 h post-fertilization until 3 d post-hatching (dph). Elevated CO2 treatments matched projections for the open ocean by the year 2100 under RCP 8.5 (880 µatm CO2) and a higher level (1700 µatm CO2) relevant to upwelling zones where pelagic fish often spawn. There was no effect of elevated CO2 on survival to hatching or 3 dph. Oil globule diameter decreased with an increasing CO2 level, indicating potential effects of elevated CO2 on energy utilization of newly hatched larvae, but other morphometric traits did not differ among treatments. Contrary to expectations, there were no effects of elevated CO2 on larval behaviour. Activity level, startle response, and phototaxis did not differ among treatments. Our results contrast with findings for reef fish, where a wide range of sensory and behavioural effects have been reported. We hypothesize that the absence of behavioural effects in 3 dph yellowtail kingfish is due to the early developmental state of newly hatched pelagic fish. Behavioural effects of high CO2 may not occur until larvae commence branchial acid-base regulation when the gills develop; however, further studies are required to test this hypothesis. Our results suggest that the early stages of kingfish development are tolerant to rising CO2 levels in the ocean.
Resumo:
To identify cellular functions involved in the early phase of the retroviral life cycle, somatic cell mutants were isolated after selection for resistance to infection. Rat2 fibroblasts were treated with chemical mutagens, and individual virus-resistant clones were recovered after selection for resistance to infection. Two clones were characterized in detail. Both mutant lines were resistant to infection by both ecotropic and amphotropic murine viruses, as well as by human immunodeficiency virus type 1 pseudotypes. One clone showed a strong block to reverse transcription of the retroviral RNA, including formation of the earliest DNA products. The second clone showed normal levels of viral DNA synthesis but did not allow formation of the circular DNAs normally found in the nucleus. Cell fractionation showed that the viral preintegration complex was present in a form that could not be extracted under conditions that readily extracted the complex from wild-type cells. The results suggest that the DNA was trapped in a nonproductive state and excluded from the nucleus of the infected cell. The properties of these two mutant lines suggest that host gene products play important roles both before and after reverse transcription.
Resumo:
Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.
Resumo:
Cysteine proteases mediate liberation of Plasmodium berghei merozoites from infected hepatocytes. In an attempt to identify the responsible parasite proteases, we screened the genome of P. berghei for cysteine protease-encoding genes. RT-PCR analyses revealed that transcription of four out of five P. berghei serine repeat antigen (PbSERA) genes was strongly upregulated in late liver stages briefly before the parasitophorous vacuole membrane ruptured to release merozoites into the host cell cytoplasm, suggesting a role of PbSERA proteases in these processes. In order to characterize PbSERA3 processing, we raised an antiserum against a non-conserved region of the protein and generated a transgenic P. berghei strain expressing a TAP-tagged PbSERA3 under the control of the endogenous promoter. Immunofluorescence assays revealed that PbSERA3 leaks into the host cell cytoplasm during merozoite development, where it might contribute to host cell death or activate host cell proteases that execute cell death. Importantly, processed PbSERA3 has been detected by Western blot analysis in cell extracts of schizont-infected cells and merozoite-infected detached hepatic cells.
Resumo:
The pre-erythrocytic (PE) phase of malaria infection, which extends from injection of sporozoites into the skin to the release of the first generation of merozoites, has traditionally been the 'black box' of the Plasmodium life cycle. However, since the advent of parasite transfection technology 13 years ago, our understanding of the PE phase in cellular and molecular terms has dramatically improved. Here, we review and comment on the major developments in the field in the past five years. Progress has been made in many diverse areas, including identifying and characterizing new proteins of interest, imaging parasites in vivo, understanding better the cell biology of hepatocyte infection and developing new vaccines against PE stages of the parasite.
Resumo:
BACKGROUND INFORMATION The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.
Resumo:
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.
Resumo:
We study the impact of the different stages of human capital accumulation on the evolution of labor productivity in a model calibrated to the U.S. from 1961 to 2008. We add early childhood education to a standard continuous time life cycle economy and assume complementarity between educational stages. There are three sectors in the model: the goods sector, the early childhood sector and the formal education sector. Agents are homogenous and choose the intensity of preschool education, how long to stay in formal school, labor effort and consumption, and there are exogenous distortions to these four decisions. The model matches the data very well and closely reproduces the paths of schooling, hours worked, relative prices and GDP. We find that the reduction in distortions to early education in the period was large and made a very strong contribution to human capital accumulation. However, due to general equilibrium effects of labor market taxation, marginal modification in the incentives for early education in 2008 had a smaller impact than those for formal education. This is because the former do not decisively affect the decision to join the labor market, while the latter do. Without labor taxation, incentives for preschool are significantly stronger.
Resumo:
Life cycle models have become important in explaining the changing size structure of firms based on the carrying capacity of regions or industries. In particular, the population ecology model predicts stages of growth, maturity and eventually decline in the number of firms in an industry. There has been criticism of such models because of their focus on external variables as pre-determinants of the potential for enterprise development. This paper attempts to reconcile the external focus of the population ecology model with relevant internal management factors in enterprise development. A survey was conducted of Australian services exporters, and the results not only confirm the existence of four separate life cycle stages in the population ecology model, but also identify the external and internal variables that are strategically relevant at each of the stages. The findings provide potentially useful information in a range of contexts including the design of small business assistance as well a providing “guide posts” to entrepreneurs engaged in enterprise development.
Resumo:
The sanguinicolids Paracardicoloides yamagutii Martin, 1974 and Plethorchis acanthus Martin, 1975 were obtained from their definitive hosts, Anguilla reinhardtii Steindachner and Mugil cephalus Linnaeus (respectively) in the tributaries of the Brisbane River, Queensland, Australia. Two putative sanguinicolid cercariae were collected from a hydrobiid gastropod, Posticobia brazieri Smith, in the same waters. The two cercariae differ markedly in size and the form of their sporocysts. Both putative cercariae develop in the digestive gland of Po. brazieri. The ITS2 rDNA region from these sanguinicolids and a Clinostomum species (utilised as an outgroup due to the close morphological similarities between the cercarial stages of the Clinostomidae and the Sanguinicolidae) were sequenced and aligned. Comparison of the ITS2 sequences showed one cercaria to be that of P. yamagutii. This is the first sanguinicolid life history determined by a molecular method. P. yamagutii is the fourth sanguinicolid known to utilise a freshwater hydrobiid gastropod as its intermediate host. ITS2 rDNA is effective in distinguishing sanguinicolids at the species level.
Resumo:
Genetic discrimination, defined as the differential treatment of individuals or their relatives on the basis of actual or presumed genetic differences, is an emerging issue of interest in academic, clinical, social and legal contexts. While its potential significance has been discussed widely, verified empirical data are scarce. Genetic discrimination is a complex phenomenon to describe and investigate, as evidenced by the recent Australian Law Reform Commission inquiry in Australia. The authors research project, which commenced in 2002, aims to document the multiple perspectives and experiences regarding genetic discrimination in Australia and inform future policy development and law reform. Data are being collected from consumers, employers, insurers and the legal system. Attempted verification of alleged accounts of genetic discrimination will be a novel feature of the research. This paper overviews the early stages of the research, including conceptual challenges and their methodological implications.