992 resultados para Leishmania panamensis
Resumo:
There are 20 named species of the genus Leishmania at present recognized in the New World, of which 14 are known to infect man. The present paper discusses the biological, biochemical and ecological features, where known, of six species which have not till now been found to cause human leishmaniasis; namely, Leishmania (Leishmania) enriettii, L. (L.) hertigi, L. (L.) deanei, L. (L.) aristidesi, L. (L.) forattinii and L. (Viannia) equatorensis. A protocol is suggested for attempts to discover the natural mammalian host(s) and sandfly vector of L. (L.) enriettii. Doubt is cast on the validity of the species L. herreri, described in Costa Rican sloths. Following the concensus of opinion that modern trypanosomatids derive from monogenetic intestinal flagellates of arthropods, phlebotomine sandflies are best regarded as the primary hosts of Leishmania species, with mammals acting as secondary hosts providing a source of parasites for these insects. There are probably natural barriers limiting the life-cycle of most leishmanial parasites to specific sandfly vectors
Resumo:
We have demonstrated that Leishmania spp. grown as promastigotes, are sensitive to the K+ channel inhibitors 4-aminopyridine and glibenclamide. Their host cells, the macrophages, are not affected by similar concentrations of the drugs. We have also initiated the molecular characterization of the mechanisms involved in the development of drug resistance to glibenclamide by the parasite. Therefore, we have selected experimentally and begun to characterize the Venezuelan Leishmania (Leishmania) strain, NR resistant to glibenclamide [NR(Gr)]. The analysis of genomic DNA evidenced the existence of a fragment which apparently is amplified in NR(Gr). The fragment recognized by the pgpA probe, related to the Leishmania P-glycoprotein family and which was originally isolated from L. tarentolae, showed a size polymorfism between the sensitive and the resistant strain. These results suggest that the development of resistance to glibenclamide in the strain NR(Gr) might be associated with the amplification of the ltpgpA or related gene(s)
Resumo:
In five experiments, Leishmania (Leishmania) major (MRHO/SU/59/P-strain) grew poorly when seeded in FYTS medium supplemented with 15% fetal calf serum, but presented several peculiar pairs of promastigotes diametrically opposed and attached at their posterior ends (5.8-13.5%). As seen in Giemsa-stained smears, a ring-like line and/or an enlargement, generally occurred at the parasite junction. A close proximity of nuclei, which sometimes were difficult to distinguish from each other, was also observed at this junction. Several of these pairs appeared to be composed of fused cells in which the nuclei could be apparently fused, as shown by fluorescence microscopy to detect ß-tubulin and DNA, and by scanning electron microscopy. Under other culture conditions these pairs were absent or occurred at very low rates (0.2-2.2%). Such pairs differ markedly from longitudinally dividing cells and resemble those described in two other Leishmania species, as well as in Herpetomonas megaseliae and Phytomonas davidi, suggesting steps of a putative sexual process
Resumo:
During recent years, several Leishmania infantum genes have been cloned and characterized. Here, we have summarized the available information on the gene organization and expression in this protozoan parasite. From a comparative analysis, the following outstanding features were found to be common to most of the genes characterized: tandemly organized genes with conserved coding regions and divergent untranslated regions, polycistronic transcription and post-transcriptional regulation of gene expression. The analysis of chromosomes of L. infantum by pulsed-field electrophoresis showed the existence of both size and number polymorphisms such that each strain has a distinctive molecular karyotype. Despite this variability, highly conserved physical linkage groups exists among different strains of L. infantum and even among Old World Leishmania species. Gene mapping on the L. infantum molecular karyotype evidenced a bias in chromosomal distribution of, at least, the evolutionary conserved genes
Resumo:
In several studies reporting cell death (CD) in lower eukaryotes and in the human protozoan parasite Leishmania, proteolytic activity was revealed using pan-caspase substrates or inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). However, most of the lower eukaryotes do not encode caspase(s) but MCA, which differs from caspase(s) in its substrate specificity and cannot be accountable for the recognition of Z-VAD-FMK. In the present study, we were interested in identifying which enzyme was capturing the Z-VAD substrate. We show that heat shock (HS) induces Leishmania CD and leads to the intracellular binding of Z-VAD-FMK. We excluded binding and inhibition of Z-VAD-FMK to Leishmania major metacaspase (LmjMCA), and identified cysteine proteinase C (LmjCPC), a cathepsin B-like (CPC) enzyme, as the Z-VAD-FMK binding enzyme. We confirmed the specific interaction of Z-VAD-FMK with CPC by showing that Z-VAD binding is absent in a Leishmania mexicana strain in which the cpc gene was deleted. We also show that parasites exposed to various stress conditions release CPC into a soluble fraction. Finally, we confirmed the role of CPC in Leishmania CD by showing that, when exposed to the oxidizing agent hydrogen peroxide (H(2)O(2)), cpc knockout parasites survived better than wild-type parasites (WT). In conclusion, this study identified CPC as the substrate of Z-VAD-FMK in Leishmania and as a potential additional executioner protease in the CD cascade of Leishmania and possibly in other lower eukaryotes.
Resumo:
The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.
Resumo:
The hypothesis of a Neotropical origin of the Leishmania/Endotrypanum clade is reviewed. The position of the L. (Sauroleishmania) external to the subgenus L. (Leishmania) is not consistent with the Neotropical origin of the latter subgenus. It is suggested that this may be a consequence of a faster evolutionary rate in the L. (Sauroleishmania). The implications for the classsification of the phlebotomine sandflies of the hypothesis for a Neotropical origin of the Leishmania is also considered. The classification of Galati (1995) is proposed to be most consistent with the hypothesis of a Neotropical origin of the Leishmania, whilst classifications which place the New and Old World species in separate taxa are inconsistent with this hypothesis.
Resumo:
Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.
Resumo:
Striking similarities at the morphological, molecular and biological levels exist between many trypanosomatids isolated from sylvatic insects and/or vertebrate reservoir hosts that make the identification of medically important parasites demanding. Some molecular data have pointed to the relationship between some Leishmania species and Endotrypanum, which has an important epidemiological significance and can be helpful to understand the evolution of those parasites. In this study, we have demonstrated a close genetic relationship between Endotrypanum and two new leishmanial species, L. (V.) colombiensis and L. (V.) equatorensis. We have used (a) numerical zymotaxonomy and (b) the variability of the internal transcribed spacers of the rRNA genes to examine relationships in this group. The evolutionary trees obtained revealed high genetic similarity between L. (V.) colombiensis, L. (V.) equatorensis and Endotrypanum, forming a tight cluster of parasites. Based on further results of (c) minicircle kDNA heterogeneity analysis and (d) measurement of the sialidase activity these parasites were also grouped together.
Resumo:
To determine if gestational factors affect the severity of L. major infection, this study assessed the levels of IL-4 mRNA and IFN-gamma mRNA in popliteal lymph node cells of pregnant C57BL/6 mice mated at 5 hours, 16 hours and 15 days post L. major infection using PCR. Infected pregnant C57BL/6 mice developed larger cutaneous footpad lesions compared with non-pregnant infected C57BL/6 mice. The resolution of footpad lesions commenced after 8th week in C57BL/6 mice mated at 16 hrs post L. major infection but 12 weeks in C57BL/6 mice mated at 5 hrs and 15 days post L. major infection. C57BL/6 mice that were infected 20 days post partum resolved L. major infection effectively. But, the lesions in infected pregnant C57BL/6 mice and infected non-pregnant C57BL/6 mice were not as large as in susceptible BALB/c mice. The mean litter weights were similar in pregnant infected C57BL/6 mice mated at different stages of L. major infection but were slightly lower than weights of litters from pregnant uninfected C57BL/6 mice. In 5 days infected pregnant C57BL/6 mice, the levels of IFN-gamma were raised compared with the levels of IL-4 but those mated at 15 days post L. major infection had highest level of IFN-gamma mRNA. In 10 days pregnant infected C57BL/6 mice, levels of IL-4 were raised compared with IFN-gamma but mice mated at 16 hrs post L. major infection had highest level of IL-4. In 15 days pregnant infected mice, the levels of IL-4 were higher than IFN-gamma irrespective of the stage of L. major infection when the mice were mated. Mice infected with L. major 20 days post-partum produced more IFN-gamma than IL-4 from 16 hrs post L. major infection onwards. It may be concluded that increased IL-4 in pregnant infected C57BL/6 mice impairs the resistance of C57BL/6 mice to L. major infection especially in mice that were pregnant before effective immunity (5 hours post L. major infection) is mounted against L. major infection.