854 resultados para Learning center design
Resumo:
Interactive educational courseware has been adopted in diverse education sectors such as primary, secondary, tertiary education, vocational and professional training. In Malaysian educational context, the ministry of education has implemented Smart School Project that aims to increase high level of academic achievement in primary and secondary schools by using interactive educational courseware. However, many researchers have reported that many coursewares fail to accommodate the learner and teacher needs. In particular, the interface design is not appropriately designed in terms of quality of learning. This paper reviews educational courseware development process in terms of defining quality of interface design and suggests a conceptual model of interface design through the integration of design components and interactive learning experience into the development process. As a result, it defines the concept of interactive learning experience in a more practical approach in order to implement each stage of the development process in a seamless and integrated way.
Resumo:
The current understanding of students’ group metacognition is limited. The research on metacognition has focused mainly on the individual student. The aim of this study was to address the void by developing a conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments. An initial conceptual framework based on the literature from metacognition, cooperative learning, cooperative group metacognition, and computer supported collaborative learning was used to inform the study. In order to achieve the study aim, a design research methodology incorporating two cycles was used. The first cycle focused on the within-group metacognition for sixteen groups of primary school students working together around the computer; the second cycle included between-group metacognition for six groups of primary school students working together on the Knowledge Forum® CSCL environment. The study found that providing groups with group metacognitive scaffolds resulted in groups planning, monitoring, and evaluating the task and team aspects of their group work. The metacognitive scaffolds allowed students to focus on how their group was completing the problem-solving task and working together as a team. From these findings, a revised conceptual model to inform the use of scaffolds to facilitate group metacognition during mathematical problem solving in computer supported collaborative learning (CSCL) environments was generated.
Resumo:
Presents arguments supporting a social model of learning linked to situated learning and cultural capital. Critiques training methods used in cultural industries (arts, publishing, broadcasting, design, fashion, restaurants). Uses case study evidence to demonstrates inadequacies of formal training in this sector. (Contains 49 references.)
Resumo:
The importance of student engagement to higher education quality, making deep learning outcomes possible for students, and achieving student retention, is increasingly being understood. The issue of student engagement in the first year of tertiary study is of particular significance. This paper takes the position that the first year curriculum, and the pedagogical principles that inform its design, are critical influencers of student engagement in the first year learning environment. We use an analysis of case studies prepared for Kift’s ALTC Senior Fellowship to demonstrate ways in which student engagement in the first year of tertiary study can be successfully supported through intentional curriculum design that motivates students to learn, provides a positive learning climate, and encourages students to be active in their learning.
Resumo:
This paper synthesises the existing literature on the contemporary conception of ‘real world’ and compares it with similar notions such as ‘authentic’ and ‘work integrated learning’. While the term ‘real world’ may be partly dependent on the discipline, it does not necessarily follow that the criterion-referenced assessment of ‘real world’ assessment must involve criteria and performance descriptors that are discipline specific. Two examples of summative assessment (court report and trial process exercise) from a final year core subject at the Queensland University of Technology, LWB432 Evidence, emphasise real world learning, are authentic, innovative and better prepare students for the transition into the workplace than more generic forms of assessment such as tutorial participation or oral presentations. The court report requires students to attend a criminal trial in a Queensland Court and complete a two page report on what they saw in practice compared with what they learned in the classroom. The trial process exercise is a 50 minute written closed book activity conducted in tutorials, where students plan questions that they would ask their witness in examination-in-chief, plan questions that they would ask their opponent’s witness in cross-examination, plan questions that they would ask in reexamination given what their opponent asked in cross-examination, and prepare written objections to their opponent’s questions. The trial process exercise simulates the real world, whereas the court report involves observing the real world, and both assessment items are important to the role of counsel. The design of the criterion-referenced assessment rubrics for the court report and trial process exercise is justified by the literature. Notably, the criteria and performance descriptors are not necessarily law specific and this paper highlights the parts that may be easily transferred to other disciplines.
Resumo:
Research on analogies in science education has focussed on student interpretation of teacher and textbook analogies, psychological aspects of learning with analogies and structured approaches for teaching with analogies. Few studies have investigated how analogies might be pivotal in students’ growing participation in chemical discourse. To study analogies in this way requires a sociocultural perspective on learning that focuses on ways in which language, signs, symbols and practices mediate participation in chemical discourse. This study reports research findings from a teacher-research study of two analogy-writing activities in a chemistry class. The study began with a theoretical model, Third Space, which informed analyses and interpretation of data. Third Space was operationalized into two sub-constructs called Dialogical Interactions and Hybrid Discourses. The aims of this study were to investigate sociocultural aspects of learning chemistry with analogies in order to identify classroom activities where students generate Dialogical Interactions and Hybrid Discourses, and to refine the operationalization of Third Space. These aims were addressed through three research questions. The research questions were studied through an instrumental case study design. The study was conducted in my Year 11 chemistry class at City State High School for the duration of one Semester. Data were generated through a range of data collection methods and analysed through discourse analysis using the Dialogical Interactions and Hybrid Discourse sub-constructs as coding categories. Results indicated that student interactions differed between analogical activities and mathematical problem-solving activities. Specifically, students drew on discourses other than school chemical discourse to construct analogies and their growing participation in chemical discourse was tracked using the Third Space model as an interpretive lens. Results of this study led to modification of the theoretical model adopted at the beginning of the study to a new model called Merged Discourse. Merged Discourse represents the mutual relationship that formed during analogical activities between the Analog Discourse and the Target Discourse. This model can be used for interpreting and analysing classroom discourse centred on analogical activities from sociocultural perspectives. That is, it can be used to code classroom discourse to reveal students’ growing participation with chemical (or scientific) discourse consistent with sociocultural perspectives on learning.
Resumo:
Over the last decade, the rapid growth and adoption of the World Wide Web has further exacerbated user needs for e±cient mechanisms for information and knowledge location, selection, and retrieval. How to gather useful and meaningful information from the Web becomes challenging to users. The capture of user information needs is key to delivering users' desired information, and user pro¯les can help to capture information needs. However, e®ectively acquiring user pro¯les is di±cult. It is argued that if user background knowledge can be speci¯ed by ontolo- gies, more accurate user pro¯les can be acquired and thus information needs can be captured e®ectively. Web users implicitly possess concept models that are obtained from their experience and education, and use the concept models in information gathering. Prior to this work, much research has attempted to use ontologies to specify user background knowledge and user concept models. However, these works have a drawback in that they cannot move beyond the subsumption of super - and sub-class structure to emphasising the speci¯c se- mantic relations in a single computational model. This has also been a challenge for years in the knowledge engineering community. Thus, using ontologies to represent user concept models and to acquire user pro¯les remains an unsolved problem in personalised Web information gathering and knowledge engineering. In this thesis, an ontology learning and mining model is proposed to acquire user pro¯les for personalised Web information gathering. The proposed compu- tational model emphasises the speci¯c is-a and part-of semantic relations in one computational model. The world knowledge and users' Local Instance Reposito- ries are used to attempt to discover and specify user background knowledge. From a world knowledge base, personalised ontologies are constructed by adopting au- tomatic or semi-automatic techniques to extract user interest concepts, focusing on user information needs. A multidimensional ontology mining method, Speci- ¯city and Exhaustivity, is also introduced in this thesis for analysing the user background knowledge discovered and speci¯ed in user personalised ontologies. The ontology learning and mining model is evaluated by comparing with human- based and state-of-the-art computational models in experiments, using a large, standard data set. The experimental results are promising for evaluation. The proposed ontology learning and mining model in this thesis helps to develop a better understanding of user pro¯le acquisition, thus providing better design of personalised Web information gathering systems. The contributions are increasingly signi¯cant, given both the rapid explosion of Web information in recent years and today's accessibility to the Internet and the full text world.
Resumo:
The inquiry documented in this thesis is located at the nexus of technological innovation and traditional schooling. As we enter the second decade of a new century, few would argue against the increasingly urgent need to integrate digital literacies with traditional academic knowledge. Yet, despite substantial investments from governments and businesses, the adoption and diffusion of contemporary digital tools in formal schooling remain sluggish. To date, research on technology adoption in schools tends to take a deficit perspective of schools and teachers, with the lack of resources and teacher ‘technophobia’ most commonly cited as barriers to digital uptake. Corresponding interventions that focus on increasing funding and upskilling teachers, however, have made little difference to adoption trends in the last decade. Empirical evidence that explicates the cultural and pedagogical complexities of innovation diffusion within long-established conventions of mainstream schooling, particularly from the standpoint of students, is wanting. To address this knowledge gap, this thesis inquires into how students evaluate and account for the constraints and affordances of contemporary digital tools when they engage with them as part of their conventional schooling. It documents the attempted integration of a student-led Web 2.0 learning initiative, known as the Student Media Centre (SMC), into the schooling practices of a long-established, high-performing independent senior boys’ school in urban Australia. The study employed an ‘explanatory’ two-phase research design (Creswell, 2003) that combined complementary quantitative and qualitative methods to achieve both breadth of measurement and richness of characterisation. In the initial quantitative phase, a self-reported questionnaire was administered to the senior school student population to determine adoption trends and predictors of SMC usage (N=481). Measurement constructs included individual learning dispositions (learning and performance goals, cognitive playfulness and personal innovativeness), as well as social and technological variables (peer support, perceived usefulness and ease of use). Incremental predictive models of SMC usage were conducted using Classification and Regression Tree (CART) modelling: (i) individual-level predictors, (ii) individual and social predictors, and (iii) individual, social and technological predictors. Peer support emerged as the best predictor of SMC usage. Other salient predictors include perceived ease of use and usefulness, cognitive playfulness and learning goals. On the whole, an overwhelming proportion of students reported low usage levels, low perceived usefulness and a lack of peer support for engaging with the digital learning initiative. The small minority of frequent users reported having high levels of peer support and robust learning goal orientations, rather than being predominantly driven by performance goals. These findings indicate that tensions around social validation, digital learning and academic performance pressures influence students’ engagement with the Web 2.0 learning initiative. The qualitative phase that followed provided insights into these tensions by shifting the analytics from individual attitudes and behaviours to shared social and cultural reasoning practices that explain students’ engagement with the innovation. Six indepth focus groups, comprising 60 students with different levels of SMC usage, were conducted, audio-recorded and transcribed. Textual data were analysed using Membership Categorisation Analysis. Students’ accounts converged around a key proposition. The Web 2.0 learning initiative was useful-in-principle but useless-in-practice. While students endorsed the usefulness of the SMC for enhancing multimodal engagement, extending peer-topeer networks and acquiring real-world skills, they also called attention to a number of constraints that obfuscated the realisation of these design affordances in practice. These constraints were cast in terms of three binary formulations of social and cultural imperatives at play within the school: (i) ‘cool/uncool’, (ii) ‘dominant staff/compliant student’, and (iii) ‘digital learning/academic performance’. The first formulation foregrounds the social stigma of the SMC among peers and its resultant lack of positive network benefits. The second relates to students’ perception of the school culture as authoritarian and punitive with adverse effects on the very student agency required to drive the innovation. The third points to academic performance pressures in a crowded curriculum with tight timelines. Taken together, findings from both phases of the study provide the following key insights. First, students endorsed the learning affordances of contemporary digital tools such as the SMC for enhancing their current schooling practices. For the majority of students, however, these learning affordances were overshadowed by the performative demands of schooling, both social and academic. The student participants saw engagement with the SMC in-school as distinct from, even oppositional to, the conventional social and academic performance indicators of schooling, namely (i) being ‘cool’ (or at least ‘not uncool’), (ii) sufficiently ‘compliant’, and (iii) achieving good academic grades. Their reasoned response therefore, was simply to resist engagement with the digital learning innovation. Second, a small minority of students seemed dispositionally inclined to negotiate the learning affordances and performance constraints of digital learning and traditional schooling more effectively than others. These students were able to engage more frequently and meaningfully with the SMC in school. Their ability to adapt and traverse seemingly incommensurate social and institutional identities and norms is theorised as cultural agility – a dispositional construct that comprises personal innovativeness, cognitive playfulness and learning goals orientation. The logic then is ‘both and’ rather than ‘either or’ for these individuals with a capacity to accommodate both learning and performance in school, whether in terms of digital engagement and academic excellence, or successful brokerage across multiple social identities and institutional affiliations within the school. In sum, this study takes us beyond the familiar terrain of deficit discourses that tend to blame institutional conservatism, lack of resourcing and teacher resistance for low uptake of digital technologies in schools. It does so by providing an empirical base for the development of a ‘third way’ of theorising technological and pedagogical innovation in schools, one which is more informed by students as critical stakeholders and thus more relevant to the lived culture within the school, and its complex relationship to students’ lives outside of school. It is in this relationship that we find an explanation for how these individuals can, at the one time, be digital kids and analogue students.
Resumo:
Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.
Blogs, wikis and podcasts : collaborative knowledge building tools in a design and technology course
Resumo:
Design and Technology has become an important part of the school curriculum. In Queensland, Australia, Technology (which encompasses Design) is one of the Key Learning Areas (KLAs) for students in the first ten years of schooling. This KLA adopts a student-centred, hands-on constructivist approach to teaching and learning. The ability to conceptualise and implement appropriate learning experiences, however, has been a challenge for some early career teachers. This paper describes how Design and Technology is being taught to pre-service primary teachers at an Australian University through their involvement in a range of authentic problem-solving activities supported by social learning tools such as wikis and blogs. An interview with a sample from this group (N=5) provides an insight into how these social software tools enhanced their knowledge and learning. This paper will describe how these social learning tools impact on the agency of learning.
Resumo:
Many current chemistry programs privilege de-contextualised conceptual learning, often limited by a narrow selection of pedagogies that too often ignore the realities of studentse own lives and interests (e.g., Tytler, 2007). One new approach that offers hope for improving studentse engagement in learning chemistry and perceived relevance of chemistry is the context-based approach. This study investigated how teaching and learning occurred in one year 11 context-based chemistry classroom. Through an interpretive methodology using a case study design, the teaching and learning that occurred during one term (ten weeks) of a unit on Water Quality are described. The researcher was a participant observer in the study who co-designed the unit of work with the teacher. The research questions explored the structure and implementation of the context-based approach, the circumstances by which students connected concepts and context in the context-based classroom and the outcome of the approach for the students and the teacher. A dialectical sociocultural theoretical framework using the dialectics of structure | agency and agency | passivity was used as a lens to explore the interactions between learners in different fields, such as the field of the classroom and the field of the local community. The findings of this study highlight the difficulties teachers face when implementing a new pedagogical approach. Time constraints and opportunities for students to demonstrate a level of conceptual understanding that satisfied the teacher, hindered a full implementation of the approach. The study found that for high (above average) and sound (average) achieving students, connections between sanctioned science content of school curriculum and the studentse out-of-school worlds were realised when students actively engaged in fields that contextualised inquiry and gave them purpose for learning. Fluid transitions or the toing and froing between concepts and contexts occurred when structures in the classroom afforded students the agency to connect concepts and contexts. The implications for teaching by a context-based approach suggest that keeping the context central, by teaching content on a "need-to-know" basis, contextualises the chemistry for students. Also, if teachers provide opportunities for student-student interactions and written work student learning can improve.
Resumo:
Most online assessment systems now incorporate social networking features, and recent developments in social media spaces include protocols that allow the synchronisation and aggregation of data across multiple user profiles. In light of these advances and the concomitant fear of data sharing in secondary school education this papers provides important research findings about generic features of online social networking, which educators can use to make sound and efficient assessments in collaboration with their students and colleagues. This paper reports on a design experiment in flexible educational settings that challenges the dichotomous legacy of success and failure evident in many assessment activities for at-risk youth. Combining social networking practices with the sociology of education the paper proposes that assessment activities are best understood as a negotiable field of exchange. In this design experiment students, peers and educators engage in explicit, "front-end" assessment (Wyatt-Smith, 2008) to translate digital artefacts into institutional, and potentiality economic capital without continually referring to paper based pre-set criteria. This approach invites students and educators to use social networking functions to assess “work in progress” and final submissions in collaboration, and in doing so assessors refine their evaluative expertise and negotiate the value of student’s work from which new criteria can emerge. The mobile advantages of web-based technologies aggregate, externalise and democratise this transparent assessment model for most, if not all, student work that can be digitally represented.
Resumo:
In this paper you will be introduced to a number of principles which can be used to inform good teaching practice and rigorous curriculum design. Principles relate to: * Application of a common sequence of events for how learners learn; * Accommodating different learning styles; * Adopting a purposeful approach to teaching and learning; * Using assessment as a central driving force in the curriculum and as an organising structure leading to coherence of teaching and learning approach; and * The increasing emphasis that is being placed on the development of generic graduate competencies over and above discipline content knowledge. The principles are particularly significant in relation to adult learning. The paper will use three specific applications as illustrations to help you to learn how these principles can be applied. The illustrations are taken from a second year subject in supercomputing that uses scientific case studies. The subject has been developed (with support from Silicon Graphics Inc. and Intel) to be taught entirely via the Internet.