953 resultados para Large Subunit Of Nuclear Ribosomal Rna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remarkable difference between the nuclear quadrupole frequencies v_Q of Cu(1) and Cu(2) in YBa_2Cu_3O_6 and YBa_2Cu_3O_7 is analyzed. We calculate the ionic contribution to the electric field gradients and estimate, by using experimental results for Cu_2O and La_2CuO_4, the contribution of the d valence electrons. Thus, we determine v_Q1, v_Q2, and the asymmetry parameter η for YBa_2Cu_3O_6 and YBa_2Cu_3O_7. The number of holes in dthe Cu-O planes and chains is found to be important for the different behavior of v_Q1 and v_Q2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I have investigated the effect of the nuclear motion on the energy eigenvalues in muonic atoms. In addition to the usually used reduced-mass correction, I have calculated the relativistic influences including the magnetic and retardation interaction between the nucleus and the muon for the inner orbitals of muonic atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.