982 resultados para Kyrö, Paula: Tutkimusprosessi valintojen polkuna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the Mid-Pleistocene Transition (MPT), the dominant glacial-interglacial cyclicity as inferred from the marine d18O records of benthic foraminifera (d18Obenthic) changed from 41 kyr to 100 kyr years in the absence of a comparable change in orbital forcing. Currently, only two Mg/Ca-derived, high-resolution bottom water temperature (BWT) records exist that can be used with d18Obenthic records to separate temperature and ice volume signals over the Pleistocene. However, these two BWT records suggest a different pattern of climate change occurred over the MPT-a record from North Atlantic DSDP Site 607 suggests BWT decreased with no long-term trend in ice volume over the MPT, while South Pacific ODP Site 1123 suggests that BWT has been relatively stable over the last 1.5 Myr but that there was an abrupt increase in ice volume at ~900 kyr. In this paper we attempt to reconcile these two views of climate change across the MPT. Specifically, we investigated the suggestion that the secular BWT trend obtained from Mg/Ca measurements on Cibicidoides wuellerstorfi and Oridorsalis umbonatus species from N. Atlantic Site 607 is biased by the possible influence of D[CO3]2- on Mg/Ca values in these species by generating a low-resolution BWT record using Uvigerina spp., a genus whose Mg/Ca values are not thought to be influenced by D[CO3]2-. We find a long-term BWT cooling of ~2-3°C occurred from 1500 to ~500 kyr in the N. Atlantic, consistent with the previously generated C. wuellerstorfi and O. umbonatus BWT record. We also find that changes in ocean circulation likely influenced d18Obenthic, BWT, and d18Oseawater records across the MPT. N. Atlantic BWT cooling starting at ~1.2 Ma, presumably driven by high-latitude cooling, may have been a necessary precursor to a threshold response in climate-ice sheet behavior at ~900 ka. At that point, a modest increase in ice volume and thermohaline reorganization may have caused enhanced sensitivity to the 100 kyr orbital cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event layers in lake sediments are indicators of past extreme events, mostly the results of floods or earthquakes. Detailed characterisation of the layers allows the discrimination of the sedimentation processes involved, such as surface runoff, landslides or subaqueous slope failures. These processes can then be interpreted in terms of their triggering mechanisms. Here we present a 40 kyr event layer chronology from Lake Suigetsu, Japan. The event layers were characterised using a multi-proxy approach, employing light microscopy and µXRF for microfacies analysis. The vast majority of event layers in Lake Suigetsu was produced by flood events (362 out of 369), allowing the construction of the first long-term, quantitative (with respect to recurrence) and well dated flood chronology from the region. The flood layer frequency shows a high variability over the last 40 kyr, and it appears that extreme precipitation events were decoupled from the average long-term precipitation. For instance, the flood layer frequency is highest in the Glacial at around 25 kyr BP, at which time Japan was experiencing a generally cold and dry climate. Other cold episodes, such as Heinrich Event 1 or the Late Glacial stadial, show a low flood layer frequency. Both observations together exclude a simple, straightforward relationship with average precipitation and temperature. We argue that, especially during Glacial times, changes in typhoon genesis/typhoon tracks are the most likely control on the flood layer frequency, rather than changes in the monsoon front or snow melts. Spectral analysis of the flood chronology revealed periodic variations on centennial and millennial time scales, with 220 yr, 450 yr and a 2000 yr cyclicity most pronounced. However, the flood layer frequency appears to have not only been influenced by climate changes, but also by changes in erosion rates due to, for instance, earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise relative sea level (RSL) data are important for inferring regional ice sheet histories, as well as helping to validate numerical models of ice sheet evolution and glacial isostatic adjustment. Here we develop a new RSL curve for Fildes Peninsula, South Shetland Islands (SSIs), a sub-Antarctic archipelago peripheral to the northern Antarctic Peninsula ice sheet, by integrating sedimentary evidence from isolation basins with geomorphological evidence from raised beaches. This combined approach yields not only a Holocene RSL curve, but also the spatial pattern of how RSL change varied across the archipelago. The curve shows a mid-Holocene RSL highstand on Fildes Peninsula at 15.5 m above mean sea level between 8000 and 7000 cal a BP. Subsequently RSL gradually fell as a consequence of isostatic uplift in response to regional deglaciation. We propose that isostatic uplift occurred at a non-steady rate, with a temporary pause in ice retreat ca. 7200 cal a BP, leading to a short-lived RSL rise of ~1 m and forming a second peak to the mid-Holocene highstand. Two independent approaches were taken to constrain the long-term tectonic uplift rate of the SSIs at 0.22-0.48 m/ka, placing the tectonic contribution to the reconstructed RSL highstand between 1.4 and 2.9 m. Finally, we make comparisons to predictions from three global sea level models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24°N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 µmol/kg. However, many of the cores collected south of 24°N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.