962 resultados para Kidney Failure, Acute


Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been suggested that reduced astrocytic uptake of neuronally released glutamate contributes to the pathogenesis of hepatic encephalopathy in acute liver failure. In order to further address this issue, the recently cloned and sequenced astrocytic glutamate transporter GLT-1 was studied in brain preparations from rats with ischemic liver failure induced by portacaval anastomosis followed 24 h later by hepatic artery ligation and from appropriate sham-operated controls. GLT-1 expression was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Expression of GLT-1 transcript was significantly decreased in frontal cortex at coma stages of acute liver failure. Western blotting using a polyclonal antibody to GLT-1 revealed a concomitant decrease in expression of transporter protein in the brains of rats with acute liver failure. Reduced capacity of astrocytes to reuptake neuronally released glutamate, resulting from a GLT-1 transporter deficit and the consequently compromised neuron-astrocytic trafficking of glutamate could contribute to the pathogenesis of hepatic encephalopathy and brain edema, two major complications of acute liver failure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Objective. Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial hypertension and death. An accepted tenet has been that the blood-brain barrier is intact and that brain edema is primarily caused by a cytotoxic etiology due to hyperammonemia. However, the neuropathological changes in ALF have been poorly studied. Using a well characterized porcine model we aimed to investigate ultrastructural changes in the brain from pigs suffering from ALF. Materials and methods. Sixteen female Norwegian Landrace pigs weighing 27-35 kg were randomised into two groups: ALF (n = 8) and sham operated controls (n = 8). ALF was induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries. Biopsies were harvested from three different areas of the brain (frontal lobe, cerebellum, and brain stem) following eight hours of ALF and analyzed using electron microscopy. Results. Profound perivascular and interstitial edema were found in all three areas. Disruption of pericytic and astrocytic processes were seen, reflecting breakdown/lesion of the blood-brain barrier in animals suffering from ALF. Furthermore, neurons and axons were edematous and surrounded by vesicles. Severe damage to Purkinje neuron (necrosis) and damaged myelin were seen in the cerebellum and brain stem, respectively. Biopsies from sham operated animals were normal. Conclusions. Our data support the concept that vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with ALF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mild hypothermia (32 degrees C-35 degrees C) reduces intracranial pressure in patients with acute liver failure and may offer an effective adjunct therapy in the management of these patients. Studies in experimental animals suggest that this beneficial effect of hypothermia is the result of a decrease in blood-brain ammonia transfer resulting in improvement in brain energy metabolism and normalization of glutamatergic synaptic regulation. Improvement in brain energy metabolism by hypothermia may result from a reduction in ammonia-induced decrease of brain glucose (pyruvate) oxidation. Restoration of normal glutamatergic synaptic regulation by hypothermia may be the consequence of the removal of ammonia-induced decreases in expression of astrocytic glutamate transporters resulting in normal glutamate neurotransmitter inactivation in brain. Randomized controlled clinical trials of hypothermia are required to further evaluate its clinical impact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of encephalopathy in patients with acute liver injury defines the occurrence of liver failure. The encephalopathy of acute liver failure is characterized by brain edema which manifests clinically as increased intracranial pressure. Despite the best available medical therapies a significant proportion of patients with acute liver failure die due to brain herniation. The present review explores the experimental and clinical data to define the role of hypothermia as a treatment modality for increased intracranial pressure in patients with acute liver failure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND/AIMS: It has been proposed that, in acute liver failure, skeletal muscle adapts to become the principle organ responsible for removal of blood-borne ammonia by increasing glutamine synthesis, a reaction that is catalyzed by the cytosolic ATP-dependent enzyme glutamine synthetase. To address this issue, glutamine synthetase expression and activities were measured in skeletal muscle of rats with acute liver failure resulting from hepatic devascularization. METHODS: Glutamine synthetase protein and gene expression were investigated using immunoblotting and semi-quantitative RT-PCR analysis. Glutamine synthetase activity and glutamine de novo synthesis were measured using, respectively, a standard enzymatic assay and [13C]-nuclear magnetic resonance spectroscopy. RESULTS: Glutamine synthetase protein (but not gene) expression and enzyme activities were significantly up-regulated leading to increased de novo synthesis of glutamine and increased skeletal muscle capacity for ammonia removal in acute liver failure. In contrast to skeletal muscle, expression and activities of glutamine synthetase in the brain were significantly decreased. CONCLUSIONS: These findings demonstrate that skeletal muscle adapts, through a rapid induction of glutamine synthetase, to increase its capacity for removal of blood-borne ammonia in acute liver failure. Maintenance of muscle mass together with the development of agents with the capacity to stimulate muscle glutamine synthetase could provide effective ammonia-lowering strategies in this disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mild hypothermia has a protective effect on brain edema and encephalopathy in both experimental and human acute liver failure. The goals of the present study were to examine the effects of mild hypothermia (35°C) on brain metabolic pathways using combined 1H and 13C-Nuclear Magnetic Resonance (NMR) spectroscopy, a technique which allows the study not only of metabolite concentrations but also their de novo synthesis via cell-specific pathways in the brain. :1H and 13C NMR spectroscopy using [1-13C] glucose was performed on extracts of frontal cortex obtained from groups of rats with acute liver failure induced by hepatic devascularization whose body temperature was maintained either at 37°C (normothermic) or 35°C (hypothermic), and appropriate sham-operated controls. At coma stages of encephalopathy in the normothermic acute liver failure animals, glutamine concentrations in frontal cortex increased 3.5-fold compared to sham-operated controls (P < 0.001). Comparable increases of brain glutamine were observed in hypothermic animals despite the absence of severe encephalopathy (coma). Brain glutamate and aspartate concentrations were respectively decreased to 60.9% ± 7.7% and 42.2% ± 5.9% (P < 0.01) in normothermic animals with acute liver failure compared to control and were restored to normal values by mild hypothermia. Concentrations of lactate and alanine in frontal cortex were increased to 169.2% ± 15.6% and 267.3% ± 34.0% (P < 0.01) respectively in normothermic rats compared to controls. Furthermore, de novo synthesis of lactate and alanine increased to 446.5% ± 48.7% and 707.9% ± 65.7% (P < 0.001), of control respectively, resulting in increased fractional 13C-enrichments in these cytosolic metabolites. Again, these changes of lactate and alanine concentrations were prevented by mild hypothermia. Mild hypothermia (35°C) prevents the encephalopathy and brain edema resulting from hepatic devascularization, selectively normalizes lactate and alanine synthesis from glucose, and prevents the impairment of oxidative metabolism associated with this model of ALF, but has no significant effect on brain glutamine. These findings suggest that a deficit in brain glucose metabolism rather than glutamine accumulation is the major cause of the cerebral complications of acute liver failure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence from both clinical and experimental studies demonstrates that mild hypothermia prevents encephalopathy and brain edema in acute liver failure (ALF). As part of a series of studies to elucidate the mechanism(s) involved in this protective effect, groups of rats with ALF resulting from hepatic devascularization were maintained at either 37°C (normothermic) or 35°C (hypothermic), and neurological status was monitored in relation to cerebrospinal fluid (CSF) concentrations of ammonia and lactate. CSF was removed via implanted cisterna magna catheters. Mild hypothermia resulted in a delay in onset of encephalopathy and prevention of brain edema; CSF concentrations of ammonia and lactate were concomitantly decreased. Blood ammonia concentrations, on the other hand, were not affected by hypothermia in ALF rats. These findings suggest that brain edema and encephalopathy in ALF are the consequence of ammonia-induced impairment of brain energy metabolism and open the way for magnetic resonance spectroscopic monitoring of cerebral function in ALF. Mild hypothermia could be beneficial in the prevention of severe encephalopathy and brain edema in patients with ALF awaiting liver transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hyperammonemia is a feature of acute liver failure (ALF), which is associated with increased intracranial pressure (ICP) and brain herniation. We hypothesized that a combination of L-ornithine and phenylacetate (OP) would synergistically reduce toxic levels of ammonia by (1) L-ornithine increasing glutamine production (ammonia removal) through muscle glutamine synthetase and (2) phenylacetate conjugating with the ornithine-derived glutamine to form phenylacetylglutamine, which is excreted into the urine. The aims of this study were to determine the effect of OP on arterial and extracellular brain ammonia concentrations as well as ICP in pigs with ALF (induced by liver devascularization). ALF pigs were treated with OP (L-ornithine 0.07 g/kg/hour intravenously; phenylbutyrate, prodrug for phenylacetate; 0.05 g/kg/hour intraduodenally) for 8 hours following ALF induction. ICP was monitored throughout, and arterial and extracellular brain ammonia were measured along with phenylacetylglutamine in the urine. Compared with ALF + saline pigs, treatment with OP significantly attenuated concentrations of arterial ammonia (589.6 +/- 56.7 versus 365.2 +/- 60.4 mumol/L [mean +/- SEM], P= 0.002) and extracellular brain ammonia (P= 0.01). The ALF-induced increase in ICP was prevented in ALF + OP-treated pigs (18.3 +/- 1.3 mmHg in ALF + saline versus 10.3 +/- 1.1 mmHg in ALF + OP-treated pigs;P= 0.001). The value of ICP significantly correlated with the concentration of extracellular brain ammonia (r(2) = 0.36,P< 0.001). Urine phenylacetylglutamine levels increased to 4.9 +/- 0.6 micromol/L in ALF + OP-treated pigs versus 0.5 +/- 0.04 micromol/L in ALF + saline-treated pigs (P< 0.001).Conclusion:L-Ornithine and phenylacetate act synergistically to successfully attenuate increases in arterial ammonia, which is accompanied by a significant decrease in extracellular brain ammonia and prevention of intracranial hypertension in pigs with ALF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel