999 resultados para Isotope separation.
Resumo:
Food web structure was studied by using carbon and nitrogen isotope ratios in a hypereutrophic subtropical Chinese lake, Lake Donghu. High external nutrient loading and the presence of abundant detritus from submersed macrophytes were responsible for the high sediment delta(15)N and delta(13)C, respectively. C-13 was significantly higher in submersed macrophytes than in other macrophytes. The similar delta(13)C values in phytoplankton, zooplankton, zoobenthos, and planktivorous fish indicate that phytoplankton was the major food source for the consumers. By using a delta(15)N mass balance model, we estimate that the contributions of zooplankton to the diet of silver carp and bighead carp were 54% and 74%, respectively, which is in agreement with previous microscopic observations on intestinal contents of these fishes.
Resumo:
The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
The influences of a high-temperature (HT) AlN interlayer (IL) on the phase separation in crack-free AlGaN grown on GaN have been studied. The depth-dependent cathodoluminescence (CL) spectra indicate a relatively uniform Al distribution in the growth direction, but the monochromatic CL images and the CL spectra obtained by line scan measurements reveal a lateral phase separation in AlGaN grown on relatively thick HT-AlN ILs. Moreover, when increasing the thickness of HT-AlN IL, the domain-like distribution of the AlN mole fraction in AlGaN layers is significantly enhanced through a great reduction of the domain size. The morphology of mesa-like small islands separated by V trenches in the HT-AlN IL, and the grain template formed by the coalescence of these islands during the subsequent AlGaN lateral overgrowth, are attributed to be responsible for the formation of domain-like structures in the AlGaN layer. (c) 2005 American Institute of Physics.
Resumo:
Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast failing edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BIR photocletector has at least 100-ps response time and can also serve as a fast photoelectric switch. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.