795 resultados para Inverse Algorithm
Resumo:
Le réovirus de mammifères se multiplie et détruit préférentiellement les cellules cancéreuses. Il est d’ailleurs actuellement à l’étude pour traiter divers types de cancers chez l’humain. L’objectif de cette étude était de mieux comprendre les diverses composantes impliquées dans le cycle viral de réovirus qui pourraient potentiellement être importantes dans le contexte d’optimisation de son potentiel oncolytique, ceci en utilisant une combinaison d’approches classiques ainsi que de génétique inverse.L’approche par persistance virale est classiquement utilisée pour identifier de nouveaux mutants de réovirus. Celle-ci a surtout mené à la sélection de mutants de décapsidation chez les cellules L929. Ici, des virus adaptés furent récupérés de cellules Vero (VeroAV) et contrairement aux autres mutants de persistance, ce virus possède des substitutions d’acides aminés sur les protéines mu1 et sigma1. L’approche par génétique inverse a permis de démontrer que la fixation de VeroAV sur les acides sialiques des cellules Vero était favorisée. Les substitutions sur sigma1 seraient principalement responsables de ce phénotype quoique le contexte de la substitution de mu1 puisse affecter l’infectivité du virus. Dans un deuxième volet, il a été remarqué que le virus de type sauvage utilisé pour la génétique inverse (T3DK) était plus sensible à l’interféron comparativement au virus de type sauvage de notre laboratoire (T3DS). Après séquençage complet du virus T3DS nous avons reconstruit, par génétique inverse, le virus T3DS. Nous avons donc pu poursuivre nos études sur le virus P4L-12 précédemment isolé au laboratoire par mutagenèse chimique. Il a été préalablement démontré que P4L-12 possède une meilleure réplication chez les cellules transformées et un blocage plus complet chez les cellules parentales, phénotype relié à une sensibilité accrue à l’interféron. Dans cette étude, des substitutions d’acides aminés sur les protéines sigma3, mu1, muNS et lambda2 furent identifiés. Nous avons démontré, par génétique inverse, que la substitution sur la protéine lambda2 était principalement responsable du phénotype de sensibilité à l’interféron. Ces approches de persistance ou de sélection de mutants sensibles à l’interféron, suivies d’une caractérisation par génétique inverse seront certainement utiles à une meilleure compréhension de réovirus et pourraient contribuer à améliorer son potentiel oncolytique.
Resumo:
Dans des contextes de post-urgence tels que le vit la partie occidentale de la République Démocratique du Congo (RDC), l’un des défis cruciaux auxquels font face les hôpitaux ruraux est de maintenir un niveau de médicaments essentiels dans la pharmacie. Sans ces médicaments pour traiter les maladies graves, l’impact sur la santé de la population est significatif. Les hôpitaux encourent également des pertes financières dues à la péremption lorsque trop de médicaments sont commandés. De plus, les coûts du transport des médicaments ainsi que du superviseur sont très élevés pour les hôpitaux isolés ; les coûts du transport peuvent à eux seuls dépasser ceux des médicaments. En utilisant la province du Bandundu, RDC pour une étude de cas, notre recherche tente de déterminer la faisabilité (en termes et de la complexité du problème et des économies potentielles) d’un problème de routage synchronisé pour la livraison de médicaments et pour les visites de supervision. Nous proposons une formulation du problème de tournées de véhicules avec capacité limitée qui gère plusieurs exigences nouvelles, soit la synchronisation des activités, la préséance et deux fréquences d’activités. Nous mettons en œuvre une heuristique « cluster first, route second » avec une base de données géospatiales qui permet de résoudre le problème. Nous présentons également un outil Internet qui permet de visualiser les solutions sur des cartes. Les résultats préliminaires de notre étude suggèrent qu’une solution synchronisée pourrait offrir la possibilité aux hôpitaux ruraux d’augmenter l’accessibilité des services médicaux aux populations rurales avec une augmentation modique du coût de transport actuel.
Resumo:
En génétique dite « classique », l’examen d’un phénotype conduit à l’étude des gènes impliqués dans son obtention. La génétique inverse est une méthode expérimentale très puissante dans laquelle, au contraire, le matériel génétique est modifié et utilisé pour reconstruire un organisme complet, afin de déterminer le résultat de ces modifications. Cette approche est spécialement bien adaptée à l'étude des virus, compte tenu de la relative simplicité et de la petite taille de leurs génomes; l’obstacle principal demeure de récupérer des virus infectieux à partir de génomes viraux clonés. Au cours des années, cet exploit a été accompli pour des représentants de presque toutes les familles de virus de mammifères. Jusqu’à récemment, les Reoviridae, virus à génome d'ARN bicaténaire segmenté, faisaient toutefois exception. Dans cette revue, les progrès réalisés vers la mise au point de la génétique inverse pour l'étude du réovirus seront discutés. La génétique inverse pourrait avoir un impact majeur dans l'optimisation de nouvelles souches de réovirus pour leur utilisation en thérapie comme agents oncolytiques et pour le développement de vaccins dans le cas des rotavirus et des orbivirus. Les travaux actuels font toutefois ressortir les limites de l'approche, la nécessité d’une analyse prudente des résultats obtenus, ainsi que le besoin de développer des systèmes plus efficaces et polyvalents.
Resumo:
A genetic algorithm has been used for null steering in phased and adaptive arrays . It has been shown that it is possible to steer the array null s precisely to the required interference directions and to achieve any prescribed null depths . A comparison with the results obtained from the analytic solution shows the advantages of using the genetic algorithm for null steering in linear array patterns
Resumo:
Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.
Resumo:
Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.
Resumo:
Applying a magnetic field to a ferromagnetic Ni50Mn34In16 alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field, giving the system a magnetically superelastic character. A further property of this alloy is that it also shows the inverse magnetocaloric effect. The magnetic superelasticity and the inverse magnetocaloric effect in Ni-Mn-In and their association with the first-order structural transition are studied by magnetization, strain, and neutron-diffraction studies under magnetic field.
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
In the present study, nano particles of NiFe3O4, I_.l()5Feg5O4 and CoFegO4 are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFe3O4 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X — band are also conducted
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion
Resumo:
The magnetocaloric properties of cobalt ferrite nanoparticles were investigated to evaluate the potential of these materials as magnetic refrigerants. Nanosized cobalt ferrites were synthesized by the method of sol–gel combustion. The nanoparticles were found to be spherical with an average crystallite size of 14 nm. The magnetic entropy change ( Sm) calculated indirectly from magnetization isotherms in the temperature region 170–320 K was found to be negative, signifying an inverse magnetocaloric effect in the nanoparticles. The magnitudes of the Sm values were found to be larger when compared to the reported values in the literature for the corresponding ferrite materials in the nanoregime.
Resumo:
Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year