878 resultados para Intelligent parking systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transport is responsible for 41% of CO2 emissions in Spain, and around 65% of that figure is due to road traffic. Tolled motorways are currently managed according to economic criteria: minimizing operational costs and maximizing revenues from tolls. Within this framework, this paper develops a new methodology for managing motorways based on a target of maximum energy efficiency. It includes technological and demand-driven policies, which are applied to two case studies. Various conclusions emerge from this study. One is, that the use of intelligent payment systems is recommended; and another, is that the most sustainable policy would involve defining the most efficient strategy for each motorway section, including the maximum use of its capacity, the toll level which attracts the most vehicles, and the optimum speed limit for each type of vehicle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transport climate change impacts have become a worldwide concern. The use of Intelligent Transport Systems (ITS) could contribute to a more effective use of resources in toll road networks. Management of toll plazas is central to the reduction of greenhouse gas (GHG) emissions, as it is there that bottlenecks and congestion occur. This study focuses on management strategies aimed at reducing climate change impacts of toll plazas by managing toll collection systems. These strategies are based on the use of different collection system technologies – Electronic Toll Collection (ETC) and Open Road Tolling (ORT) – and on queue management. The carbon footprint of various toll plazas is determined by a proposed integrated methodology which estimates the carbon dioxide (CO2) emissions of the different operational stages at toll plazas (deceleration, service time, acceleration, and queuing) for the different toll collection systems. To validate the methodology, two main-line toll plazas of a Spanish toll highway were evaluated. The findings reveal that the application of new technologies to toll collection systems is an effective management strategy from an environmental point of view. The case studies revealed that ORT systems lead to savings of up to 70% of CO2 emissions at toll plazas, while ETC systems save 20% comparing to the manual ones. Furthermore, queue management can offer a 16% emissions savings when queue time is reduced by 116 seconds. The integrated methodology provides an efficient environmental management tool for toll plazas. The use of new technologies is the future of the decarbonization of toll plazas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En las últimas décadas el mundo ha sufrido un aumento exponencial en la utilización de soluciones tecnológicas, lo que ha desembocado en la necesidad de medir situaciones o estados de los distintos objetos que nos rodean. A menudo, no es posible cablear determinados sensores por lo que ese aumento en la utilización de soluciones tecnológicas, se ha visto traducido en un aumento de la necesidad de utilización de sensórica sin cables para poder hacer telemetrías correctas. A nivel social, el aumento de la demografía mundial está estrechamente ligado al aumento de la necesidad de servicios tecnológicos, por lo que es lógico pensar que a más habitantes, más tecnología será consumida. El objetivo de este Proyecto Final de Carrera está basado en la utilización de diversos nodos o también llamados motas capaces de realizar transferencia de datos en modo sin cables, permitiendo así realizar una aplicación real que solvente problemas generados por el aumento de la densidad de población. En concreto se busca la realización de un sistema de aparcamiento inteligente para estacionamientos en superficie, ayudando por tanto a las tareas de ordenación vehicular dentro del marco de las Smart cities. El sistema está basado en el protocolo de comunicaciones 802.15.4 (ZigBee) cuyas características fundamentales radican en el bajo consumo de energía de los componentes hardware asociados. En primer lugar se realizará un Estado del Arte de las Redes Inalámbricas de Sensores, abordando tanto la arquitectura como el estándar Zigbee y finalmente los componentes XBee que se van a utilizar en este Proyecto. Seguidamente se realizará la algoritmia necesaria para el buen funcionamiento del sistema inteligente de estacionamiento y finalmente se realizará un piloto demostrador del correcto funcionamiento de la tecnología. ABSTRACT In the last decades the world has experienced an exponential increase in the use of technological solutions, which has resulted in the need to measure situations or states of the objects around us. Often, wired sensors cannot be used at many situations, so the increase in the use of technological solutions, has been translated into a increase of the need of using wireless sensors to make correct telemetries. At the social level, the increase in global demographics is closely linked to the increased need for technological services, so it is logical that more people, more technology will be consumed. The objective of this Final Project is based on the use of various nodes or so-called motes, capable of performing data transfer in wireless mode, thereby allowing performing a real application solving problems generated by the increase of population densities. Specifically looking for the realization of a smart outdoor parking system, thus helping to vehicular management tasks within the framework of the Smart Cities. The system is based on the communication protocol 802.15.4 (ZigBee) whose main characteristics lie in the low energy consumption associated to the hardware components. First there will be a State of the Art of Wireless Sensor Networks, addressing both architecture and finally the Zigbee standard XBee components to be used in this project. Then the necessary algorithms will be developed for the proper working of the intelligent parking system and finally there will be a pilot demonstrator validating the whole system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente trabajo describe la construcción de una aplicación que controla a un Non Player Character (NPC), en un mundo virtual. La aplicación desarrollada, que tiene como nombre BotManager, realiza dos tareas fundamentales: 1) conectarse al repositorio de conocimiento, que en esta implementación es una ontología expresada en OWL, para obtener las acciones que debe realizar el NPC dentro del mundo virtual; y 2) ordenar al NPC que realice estas acciones en un mundo virtual creado con la plataforma OpenSimulator. BotManager puede tener variadas aplicaciones, por lo tanto puede ser usada como complemento en mundos virtuales aplicados a la educación, simulación, ocio, etc. Ahora bien, la principal razón que motivó el desarrollo del BotManager fue la de crear un sistema de demostración automática de tareas en un mundo virtual destinado a la educación/ entrenamiento. De esta forma, un Sistema Inteligente de Tutoría integrado con un mundo virtual podría demostrar paso a paso a un estudiante cómo realizar una tarea en el mundo virtual. La ontología que lee el BotManager extiende la ontología propuesta en la tesis “Una propuesta de modelado del estudiante basada en ontologías y diagnóstico pedagógico-cognitivo no monótono” de Julia Parraga en el 2011 (Ontología de Julia). La construcción y las pruebas del BotManager se llevaron a cabo en tres etapas: 1) creación de la Ontología de Acciones del NPC que extiende la Ontología de Julia; 2) diseño e implementación de la aplicación en C# que lee la ontología que contiene el plan de acción del NPC, y ordena al NPC realizar las acciones en el mundo virtual; y 3) pruebas de la aplicación con la práctica “preparación de una taza de cafe”, que es parte de un Laboratorio Virtual de Biotecnología. El BotManager se ha diseñado como una aplicación cliente que se conecta a un servidor de Open- Simulator. Por lo tanto, puede ejecutarse en una máquina distinta a la del servidor. Asimismo, en la implementación del BotManager se ha utilizado una librería gratuita denominada LibOpenMetaverse que permite controlar un NPC de forma remota.---ABSTRACT---This paper describes the construction of an application that controls a Non Player Character (NPC), in a virtual world. The application developed, called BotManager, performs two main tasks: 1) the connection to the repository of knowledge, which in this implementation is an ontology expressed in OWL, and retrieving the actions to be performed by the NPC within the virtual world; and 2) commanding the NPC to perform these actions in a virtual world created with the OpenSimulator platform. BotManager can have diverse applications, therefore it can be used as a complement in virtual worlds applied to education, simulation, entertainment, etc. However, the main reason behind the development of BotManager was to create an automatic demonstration of tasks in a virtual world for education / training. Thus, a virtual world integrated with an Intelligent Tutoring Systems could demonstrate step by step to a student how to perform a task in the virtual world. The ontology used by the BotManager extends ontology proposed in the thesis “A proposal for modeling ontologies based student and not monotonous teaching-cognitive diagnosis” by Julia Parraga in 2011 (Julia’s Ontology). Construction and testing of BotManager were conducted in three stages: 1) creation of the NPC Actions Ontology by extending the Julia’s Ontology; 2) design and implementation of the application in C# that reads the ontology containing the plan of action of the NPC, and commands the NPC to perform the read plan in the virtual world; and 3) testing of the application with the practice “preparing a cup of coffee”, which is part of a Virtual Laboratory of Biotechnology. The BotManager has been designed as a client application that connects to an OpenSimulator server. Therefore, it can run on a different machine to the server. To implement the BotManager we have used a free library called libopenmetaverse that allows us to control a NPC remotely.