947 resultados para Intelligent Signal Processing
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
Introduction ICM+ software encapsulates our 20 years' experience in brain monitoring. It collects data from a variety of bedside monitors and produces time trends of parameters defi ned using confi gurable mathematical formulae. To date it is being used in nearly 40 clinical research centres worldwide. We present its application for continuous monitoring of cerebral autoregulation using near-infrared spectroscopy (NIRS). Methods Data from multiple bedside monitors are processed by ICM+ in real time using a large selection of signal processing methods. These include various time and frequency domain analysis functions as well as fully customisable digital fi lters. The fi nal results are displayed in a variety of ways including simple time trends, as well as time window based histograms, cross histograms, correlations, and so forth. All this allows complex information from bedside monitors to be summarized in a concise fashion and presented to medical and nursing staff in a simple way that alerts them to the development of various pathological processes. Results One hundred and fi fty patients monitored continuously with NIRS, arterial blood pressure (ABP) and intracranial pressure (ICP), where available, were included in this study. There were 40 severely headinjured adult patients, 27 SAH patients (NCCU, Cambridge); 60 patients undergoing cardiopulmonary bypass (John Hopkins Hospital, Baltimore) and 23 patients with sepsis (University Hospital, Basel). In addition, MCA fl ow velocity (FV) was monitored intermittently using transcranial Doppler. FV-derived and ICP-derived pressure reactivity indices (PRx, Mx), as well as NIRS-derived reactivity indices (Cox, Tox, Thx) were calculated and showed signifi cant correlation with each other in all cohorts. Errorbar charts showing reactivity index PRx versus CPP (optimal CPP chart) as well as similar curves for NIRS indices versus CPP and ABP were also demonstrated. Conclusions ICM+ software is proving to be a very useful tool for enhancing the battery of available means for monitoring cerebral vasoreactivity and potentially facilitating autoregulation guided therapy. Complexity of data analysis is also hidden inside loadable profi les, thus allowing investigators to take full advantage of validated protocols including advanced processing formulas.
Resumo:
A T(2) magnetization-preparation (T(2) Prep) sequence is proposed that is insensitive to B(1) field variations and simultaneously provides fat suppression without any further increase in specific absorption rate (SAR). Increased B(1) inhomogeneity at higher magnetic field strength (B(0) > or = 3T) necessitates a preparation sequence that is less sensitive to B(1) variations. For the proposed technique, T(2) weighting in the image is achieved using a segmented B(1)-insensitive rotation (BIR-4) adiabatic pulse by inserting two equally long delays, one after the initial reverse adiabatic half passage (AHP), and the other before the final AHP segment of a BIR-4 pulse. This sequence yields T(2) weighting with both B(1) and B(0) insensitivity. To simultaneously suppress fat signal (at the cost of B(0) insensitivity), the second delay is prolonged so that fat accumulates additional phase due to its chemical shift. Numerical simulations as well as phantom and in vivo image acquisitions were performed to show the efficacy of the proposed technique.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.
Resumo:
The purpose of this study is to introduce and describe a newly developed index using foot pressure analysis to quantify the degree of equinus gait in children with cerebral palsy before and after injection with botulinum toxin. Data were captured preinjection and 12 weeks postinjection. Ten children aged 2(1/2) to 6(1/2) years took part (5 boys and 5 girls). Three of them had a diagnosis of spastic diplegia and 7 of congenital hemiplegia. In total, 13 limbs were analyzed. After orientation and segmentation of raw pedobarographic data, we determined a dynamic foot pressure index graded 0 to 100 that quantified the relative degree of heel and forefoot contact during stance. These data were correlated (Pearson correlation) with clinical measurements of dorsiflexion at the ankle (on a slow and fast stretch) and video observation (using the Observational Gait Scale). Pedobarograph data were strongly correlated with both the Observational Gait Scale scores (R = 0.79, P < 0.005) and clinical measurements of dorsiflexion on a fast stretch, which is reflective of spasticity (R = 0.70, P < 0.005). We demonstrated the index's sensitivity in detecting changes in spasticity and good correlation with video observations seems to indicate this technique's potential validity. When manipulated and segmented appropriately, and with the development of a simple ordinal index, we found that foot pressure data provided a useful tool in tracking changes in patients with spastic equinus.
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot
Resumo:
Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli).
Resumo:
In this work we propose a method to quantify written signatures from digitalized images based on the use of Elliptical Fourier Descriptors (EFD). As usually signatures are not represented as a closed contour, and being that a necessary condition in order to apply EFD, we have developed a method that represents the signatures by means of a set of closed contours. One of the advantages of this method is that it can reconstruct the original shape from all the coefficients, or an approximated shape from a reduced set of them finding the appropriate number of EFD coefficients required for preserving the important information in each application. EFD provides accurate frequency information, thus the use of EFD opens many possibilities. The method can be extended to represent other kind of shapes.
Resumo:
In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Resumo:
The aim of this study was to develop an ambulatory system for the three-dimensional (3D) knee kinematics evaluation, which can be used outside a laboratory during long-term monitoring. In order to show the efficacy of this ambulatory system, knee function was analysed using this system, after an anterior cruciate ligament (ACL) lesion, and after reconstructive surgery. The proposed system was composed of two 3D gyroscopes, fixed on the shank and on the thigh, and a portable data logger for signal recording. The measured parameters were the 3D mean range of motion (ROM) and the healthy knee was used as control. The precision of this system was first assessed using an ultrasound reference system. The repeatability was also estimated. A clinical study was then performed on five unilateral ACL-deficient men (range: 19-36 years) prior to, and a year after the surgery. The patients were evaluated with the IKDC score and the kinematics measurements were carried out on a 30 m walking trial. The precision in comparison with the reference system was 4.4 degrees , 2.7 degrees and 4.2 degrees for flexion-extension, internal-external rotation, and abduction-adduction, respectively. The repeatability of the results for the three directions was 0.8 degrees , 0.7 degrees and 1.8 degrees . The averaged ROM of the five patients' healthy knee were 70.1 degrees (standard deviation (SD) 5.8 degrees), 24.0 degrees (SD 3.0 degrees) and 12.0 degrees (SD 6.3 degrees for flexion-extension, internal-external rotation and abduction-adduction before surgery, and 76.5 degrees (SD 4.1 degrees), 21.7 degrees (SD 4.9 degrees) and 10.2 degrees (SD 4.6 degrees) 1 year following the reconstruction. The results for the pathologic knee were 64.5 degrees (SD 6.9 degrees), 20.6 degrees (SD 4.0 degrees) and 19.7 degrees (8.2 degrees) during the first evaluation, and 72.3 degrees (SD 2.4 degrees), 25.8 degrees (SD 6.4 degrees) and 12.4 degrees (SD 2.3 degrees) during the second one. The performance of the system enabled us to detect knee function modifications in the sagittal and transverse plane. Prior to the reconstruction, the ROM of the injured knee was lower in flexion-extension and internal-external rotation in comparison with the controlateral knee. One year after the surgery, four patients were classified normal (A) and one almost normal (B), according to the IKDC score, and changes in the kinematics of the five patients remained: lower flexion-extension ROM and higher internal-external rotation ROM in comparison with the controlateral knee. The 3D kinematics was changed after an ACL lesion and remained altered one year after the surgery