395 resultados para Immunotherapy.
Resumo:
Allergic eye disease encompasses a group of hypersensitivity disorders which primarily affect the conjunctiva and its prevalence is increasing. It is estimated to affect 8% of patients attending optometric practice but is poorly managed and rarely involves ophthalmic assessment. Seasonal allergic conjunctivitis (SAC) is the most common form of allergic eye disease (90%), followed by perennial allergic conjunctivitis (PAC; 5%). Both are type 1 IgE mediated hypersensitivity reactions where mast cells play an important role in pathophysiology. The signs and symptoms are similar but SAC occurs periodically whereas PAC occurs year round. Despite being a relatively mild condition, the effects on the quality of life can be profound and therefore they demand attention. Primary management of SAC and PAC involves avoidance strategies depending on the responsible allergen(s) to prevent the hypersensitivity reaction. Cooled tear supplements and cold compresses may help bring relief. Pharmacological agents may become necessary as it is not possible to completely avoid the allergen(s). There are a wide range of anti-allergic medications available, such as mast cell stabilisers, antihistamines and dual-action agents. Severe cases refractory to conventional treatment require anti-inflammatories, immunomodulators or immunotherapy. Additional qualifications are required to gain access to these medications, but entry-level optometrists must offer advice and supportive therapy. Based on current evidence, the efficacy of anti-allergic medications appears equivocal so prescribing should relate to patient preference, dosing and cost. More studies with standardised methodologies are necessary elicit the most effective anti-allergic medications but those with dual-actions are likely to be first line agents.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Allergic eye disease encompasses a group of hypersensitivity disorders which primarily affect the conjunctiva and its prevalence is increasing. It is estimated to affect 8% of patients attending optometric practice but is poorly managed and rarely involves ophthalmic assessment. Seasonal allergic conjunctivitis (SAC) is the most common form of allergic eye disease (90%), followed by perennial allergic conjunctivitis (PAC; 5%). Both are type 1 IgE mediated hypersensitivity reactions where mast cells play an important role in pathophysiology. The signs and symptoms are similar but SAC occurs periodically whereas PAC occurs year round. Despite being a relatively mild condition, the effects on the quality of life can be profound and therefore they demand attention. Primary management of SAC and PAC involves avoidance strategies depending on the responsible allergen(s) to prevent the hypersensitivity reaction. Cooled tear supplements and cold compresses may help bring relief. Pharmacological agents may become necessary as it is not possible to completely avoid the allergen(s). There are a wide range of anti-allergic medications available, such as mast cell stabilisers, antihistamines and dual-action agents. Severe cases refractory to conventional treatment require anti-inflammatories, immunomodulators or immunotherapy. Additional qualifications are required to gain access to these medications, but entry-level optometrists must offer advice and supportive therapy. Based on current evidence, the efficacy of anti-allergic medications appears equivocal so prescribing should relate to patient preference, dosing and cost. More studies with standardised methodologies are necessary elicit the most effective anti-allergic medications but those with dual-actions are likely to be first line agents. © 2011 British Contact Lens Association.
Resumo:
Telemedicine refers to the application of telecommunication and information technology (IT) in the delivery of health and clinical care at a distance or remotely and can be broadly considered in two modalities: store-and-forward and real-time interactive services. Preliminary studies have shown promising results in radiology, dermatology, intensive care, diabetes, rheumatology and primary care. However, the evidence is limited and hampered by small sample sizes, paucity of randomised controlled studies and lack of data relating to cost-effectiveness, health related quality of life and patient and clinician satisfaction. This review appraises the evidence from studies that have employed telemedicine tools in other disciplines and makes suggestions for its potential applications in specific clinical scenarios in adult allergy services. Possible examples include: triaging patients to determine the need for allergy tests; pre-assessment for specialised treatments such as allergen immunotherapy; follow up to assess treatment response and side effects; and education in self-management plan including training updates for self-injectable adrenaline and nasal spray use. This approach might improve access for those with limited mobility or living far away from regional centres, as well as bringing convenience and cost savings for the patient and service provider. These potential benefits need to be carefully weighed against evidence of service safety and quality. Keys to success include delineation of appropriate clinical scenarios, patient selection, training, IT support and robust information governance framework. Well-designed prospective studies are needed to evaluate its role. This article is protected by copyright. All rights reserved.
Resumo:
Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.
Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.
Resumo:
Our group has pioneered the development of a live-attenuated poliovirus, called PVSRIPO, for the purpose of targeting cancer. Despite clinical progress, the cancer selective cytotoxicity and immunotherapeutic potential of PVSRIPO has not yet been mechanistically dissected. Defining such mechanisms may inform its clinical application.
Herein I describe the discovery of a mechanism by which the MAP-Kinase Interacting Kinases (MNKs) regulate PVSRIPO cytotoxicity in cancer. In doing so, I delineate a novel, intricate network connecting the MNK and mTOR signaling pathway that regulates activity of a splicing kinase called the Ser-Arg Rich Protein Kinase (SRPK), and define SRPK as an impediment to IRES mediated translation. Moreover, I demonstrate that MNK regulates mTORC1 associations that determine its substrate proximity and thus, activity. In a collaborative effort, we found that PVSRIPO oncolysis produces antigen specific, cytolytic anti-tumor immunity in an in vitro human system and that much of the observed adjuvancy is due to the direct infection of dendritic cells (DCs) by the virus itself; implicating PVSRIPO as a potent adjuvant. In summary, oncogenic signaling in part through MNK leads to cancer specific cytotoxicity by PVSRIPO that engages an inflammatory environment conducive to DC activation and antigen specific T cell antigen immunity.
Resumo:
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Resumo:
CD73 est un ecto-enzyme qui a été associé à la suppression de l'immunité anti-tumorale. Ses valeurs pronostiques et thérapeutiques ont été mises de l'avant dans plusieurs types de cancer. La première hypothèse du projet est que l'expression de CD73 dans la tumeur prédit le pronostic des patients atteints du cancer de la prostate. L'expression de CD73 a été étudiée par immunofluorescence dans des échantillons de tumeur. Puis, des analyses univariées et multivariées ont été conduites pour déterminer si l'expression de CD73 permet de prédire la récidive biochimique des patients. Nous avons déterminé que CD73 prédit indépendamment le pronostic des patients atteints du cancer de la prostate. De plus, nous avons déterminé que son expression dans le tissu normal adjacent ou dans la tumeur prédit différemment la survenue de la récidive biochimique. La deuxième hypothèse est que l'inhibition de CD73 permet d'améliorer l'efficacité d'un vaccin thérapeutique contre le cancer de la prostate. L'effet d'un vaccin de type GVAX a été étudié dans des souris CD73KO ou en combinaison avec un anticorps ciblant CD73. Nous avons observé que l'efficacité du vaccin était augmentée dans les souris où CD73 était absent. Cependant, la combinaison avec l'anti-CD73 n'a pas permis d'améliorer l'efficacité.
Resumo:
While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host's immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines.
Resumo:
Following the intrinsically linked balance sheets in his Capital Formation Life Cycle, Lukas M. Stahl explains with his Triple A Model of Accounting, Allocation and Accountability the stages of the Capital Formation process from FIAT to EXIT. Based on the theoretical foundations of legal risk laid by the International Bar Association with the help of Roger McCormick and legal scholars such as Joanna Benjamin, Matthew Whalley and Tobias Mahler, and founded on the basis of Wesley Hohfeld’s category theory of jural relations, Stahl develops his mutually exclusive Four Determinants of Legal Risk of Law, Lack of Right, Liability and Limitation. Those Four Determinants of Legal Risk allow us to apply, assess, and precisely describe the respective legal risk at all stages of the Capital Formation Life Cycle as demonstrated in case studies of nine industry verticals of the proposed and currently negotiated Transatlantic Trade and Investment Partnership between the United States of America and the European Union, TTIP, as well as in the case of the often cited financing relation between the United States and the People’s Republic of China. Having established the Four Determinants of Legal Risk and its application to the Capital Formation Life Cycle, Stahl then explores the theoretical foundations of capital formation, their historical basis in classical and neo-classical economics and its forefathers such as The Austrians around Eugen von Boehm-Bawerk, Ludwig von Mises and Friedrich von Hayek and most notably and controversial, Karl Marx, and their impact on today’s exponential expansion of capital formation. Starting off with the first pillar of his Triple A Model, Accounting, Stahl then moves on to explain the Three Factors of Capital Formation, Man, Machines and Money and shows how “value-added” is created with respect to the non-monetary capital factors of human resources and industrial production. Followed by a detailed analysis discussing the roles of the Three Actors of Monetary Capital Formation, Central Banks, Commercial Banks and Citizens Stahl readily dismisses a number of myths regarding the creation of money providing in-depth insight into the workings of monetary policy makers, their institutions and ultimate beneficiaries, the corporate and consumer citizens. In his second pillar, Allocation, Stahl continues his analysis of the balance sheets of the Capital Formation Life Cycle by discussing the role of The Five Key Accounts of Monetary Capital Formation, the Sovereign, Financial, Corporate, Private and International account of Monetary Capital Formation and the associated legal risks in the allocation of capital pursuant to his Four Determinants of Legal Risk. In his third pillar, Accountability, Stahl discusses the ever recurring Crisis-Reaction-Acceleration-Sequence-History, in short: CRASH, since the beginning of the millennium starting with the dot-com crash at the turn of the millennium, followed seven years later by the financial crisis of 2008 and the dislocations in the global economy we are facing another seven years later today in 2015 with several sordid debt restructurings under way and hundred thousands of refugees on the way caused by war and increasing inequality. Together with the regulatory reactions they have caused in the form of so-called landmark legislation such as the Sarbanes-Oxley Act of 2002, the Dodd-Frank Act of 2010, the JOBS Act of 2012 or the introduction of the Basel Accords, Basel II in 2004 and III in 2010, the European Financial Stability Facility of 2010, the European Stability Mechanism of 2012 and the European Banking Union of 2013, Stahl analyses the acceleration in size and scope of crises that appears to find often seemingly helpless bureaucratic responses, the inherent legal risks and the complete lack of accountability on part of those responsible. Stahl argues that the order of the day requires to address the root cause of the problems in the form of two fundamental design defects of our Global Economic Order, namely our monetary and judicial order. Inspired by a 1933 plan of nine University of Chicago economists abolishing the fractional reserve system, he proposes the introduction of Sovereign Money as a prerequisite to void misallocations by way of judicial order in the course of domestic and transnational insolvency proceedings including the restructuring of sovereign debt throughout the entire monetary system back to its origin without causing domino effects of banking collapses and failed financial institutions. In recognizing Austrian-American economist Schumpeter’s Concept of Creative Destruction, as a process of industrial mutation that incessantly revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new one, Stahl responds to Schumpeter’s economic chemotherapy with his Concept of Equitable Default mimicking an immunotherapy that strengthens the corpus economicus own immune system by providing for the judicial authority to terminate precisely those misallocations that have proven malignant causing default perusing the century old common law concept of equity that allows for the equitable reformation, rescission or restitution of contract by way of judicial order. Following a review of the proposed mechanisms of transnational dispute resolution and current court systems with transnational jurisdiction, Stahl advocates as a first step in order to complete the Capital Formation Life Cycle from FIAT, the creation of money by way of credit, to EXIT, the termination of money by way of judicial order, the institution of a Transatlantic Trade and Investment Court constituted by a panel of judges from the U.S. Court of International Trade and the European Court of Justice by following the model of the EFTA Court of the European Free Trade Association. Since the first time his proposal has been made public in June of 2014 after being discussed in academic circles since 2011, his or similar proposals have found numerous public supporters. Most notably, the former Vice President of the European Parliament, David Martin, has tabled an amendment in June 2015 in the course of the negotiations on TTIP calling for an independent judicial body and the Member of the European Commission, Cecilia Malmström, has presented her proposal of an International Investment Court on September 16, 2015. Stahl concludes, that for the first time in the history of our generation it appears that there is a real opportunity for reform of our Global Economic Order by curing the two fundamental design defects of our monetary order and judicial order with the abolition of the fractional reserve system and the introduction of Sovereign Money and the institution of a democratically elected Transatlantic Trade and Investment Court that commensurate with its jurisdiction extending to cases concerning the Transatlantic Trade and Investment Partnership may complete the Capital Formation Life Cycle resolving cases of default with the transnational judicial authority for terminal resolution of misallocations in a New Global Economic Order without the ensuing dangers of systemic collapse from FIAT to EXIT.
Resumo:
The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.
Resumo:
Adoptive immunotherapy and oncolytic virotherapy are two promising strategies for treating primary and metastatic malignant brain tumors. We demonstrate the ability of adoptively transferred tumor-specific T cells to rapidly mediate the clearance of established brain tumors in several mouse models. Similar to the clinical situation, tumor recurrences are frequent and result from immune editing of tumors. T cells can eliminate antigen-expressing tumor cells but are not effective against antigen loss variant (ALV) cancer cells that multiply and repopulate a tumor. We show that the level of tumor antigen present affects the success of adoptive T cell therapy. When high levels of antigen are present, tumor stromal cells such as microglia and macrophages present tumor peptide on their surface. As a result, T cells directly eliminate cancer cells and cross-presenting stromal cells and indirectly eliminate ALV cells. We were able to show the first direct evidence of tumor antigen cross-presentation by CD11b+ stromal cells in the brain using soluble, high-affinity T cell receptor monomers. Strategies that target brain tumor stroma or increase antigen shedding from tumor cells leading to increased crosspresentation by stromal cells may improve the clinical success of T cell adoptive therapies. We evaluated one potential strategy to complement adoptive T cell therapy by characterizing the oncolytic effects of myxoma virus (MYXV) in a syngeneic mouse brain tumor model of metastatic melanoma. MYXV is a rabbit poxvirus with strict species tropism for European rabbits. MYXV can also infect mouse and human cancer cell lines due to signaling defects in innate antiviral mechanisms and hyperphosphorylation of Akt. MYXV kills B16.SIY melanoma cells in vitro, and intratumoral injection of virus leads to robust, selective and transient infection of the tumor. We observed that virus treatment recruits innate immune cells iii to the tumor, induces TNFα and IFNβ production in the brain, and results in limited oncolytic effects in vivo. To overcome this, we evaluated the safety and efficacy of co-administering 2C T cells, MYXV, and neutralizing antibodies against IFNβ. Mice that received the triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Based on these findings, methods to enhance viral replication in the tumor and limit immune clearance of the virus will be pursued. We conclude that myxoma virus should be further explored as a vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.
Resumo:
CD73 est un ecto-enzyme qui a été associé à la suppression de l'immunité anti-tumorale. Ses valeurs pronostiques et thérapeutiques ont été mises de l'avant dans plusieurs types de cancer. La première hypothèse du projet est que l'expression de CD73 dans la tumeur prédit le pronostic des patients atteints du cancer de la prostate. L'expression de CD73 a été étudiée par immunofluorescence dans des échantillons de tumeur. Puis, des analyses univariées et multivariées ont été conduites pour déterminer si l'expression de CD73 permet de prédire la récidive biochimique des patients. Nous avons déterminé que CD73 prédit indépendamment le pronostic des patients atteints du cancer de la prostate. De plus, nous avons déterminé que son expression dans le tissu normal adjacent ou dans la tumeur prédit différemment la survenue de la récidive biochimique. La deuxième hypothèse est que l'inhibition de CD73 permet d'améliorer l'efficacité d'un vaccin thérapeutique contre le cancer de la prostate. L'effet d'un vaccin de type GVAX a été étudié dans des souris CD73KO ou en combinaison avec un anticorps ciblant CD73. Nous avons observé que l'efficacité du vaccin était augmentée dans les souris où CD73 était absent. Cependant, la combinaison avec l'anti-CD73 n'a pas permis d'améliorer l'efficacité.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Anti-NMDA receptor encephalitis is an autoimmune disease that was identified in 2007, and manifests in a stepwise manner with psychiatric, neurological and autonomic symptoms. The disease is caused by autoantibodies against NMDA receptors. It can have a paraneoplastic origin, mainly secondary to ovarian teratomas, but it can also be unrelated to the tumor. This disease can affect both sexes and all ages. CASE PRESENTATION: Here, we present a case of a 15 year-old female adolescent with first-episode psychosis with anti-NMDA receptor encephalitis not related to tumor, which manifested with delusion, hallucinations, panic attacks, agitation, and neurological symptoms, and later with autonomic instability. She was treated with immunotherapy and psychiatric medication resulting in improvement of her main psychiatric and neurological symptoms. CONCLUSION: Our main objective in presenting this case is to alert clinicians to this challenging and recent disease that has a clinical presentation that might resemble a functional psychiatric condition and can be underdiagnosed in the context of child and adolescent psychiatry