882 resultados para Images classifiers


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a typical shoeprint classification and retrieval system, the first step is to segment meaningful basic shapes and patterns in a noisy shoeprint image. This step has significant influence on shape descriptors and shoeprint indexing in the later stages. In this paper, we extend a recently developed denoising technique proposed by Buades, called non-local mean filtering, to give a more general model. In this model, the expected result of an operation on a pixel can be estimated by performing the same operation on all of its reference pixels in the same image. A working pixel’s reference pixels are those pixels whose neighbourhoods are similar to the working pixel’s neighbourhood. Similarity is based on the correlation between the local neighbourhoods of the working pixel and the reference pixel. We incorporate a special instance of this general case into thresholding a very noisy shoeprint image. Visual and quantitative comparisons with two benchmarking techniques, by Otsu and Kittler, are conducted in the last section, giving evidence of the effectiveness of our method for thresholding noisy shoeprint images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)

Relevância:

20.00% 20.00%

Publicador: