687 resultados para Image inpainting
Resumo:
The aim of this article was to study the effect of virtual-reality exposure to situations that are emotionally significant for patients with eating disorders (ED) on the stability of body-image distortion and body-image dissatisfaction. A total of 85 ED patients and 108 non-ED students were randomly exposed to four experimental virtual environments: a kitchen with low-calorie food, a kitchen with high-calorie food, a restaurant with low-calorie food, and a restaurant with high-calorie food. In the interval between the presentation of each situation, body-image distortion and body-image dissatisfaction were assessed. Several 2 x 2 x 2 repeated measures analyses of variance (high-calorie vs. low-calorie food x presence vs. absence of people x ED group vs. control group) showed that ED participants had significantly higher levels of body-image distortion and body dissatisfaction after eating high-calorie food than after eating low-calorie food, while control participants reported a similar body image in all situations. The results suggest that body-image distortion and body-image dissatisfaction show both trait and state features. On the one hand, ED patients show a general predisposition to overestimate their body size and to feel more dissatisfied with their body image than controls. On the other hand, these body-image disturbances fluctuate when participants are exposed to virtual situations that are emotionally relevant for them.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.
Resumo:
In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.
Resumo:
The tourism image is an element that conditions the competitiveness of tourism destinations by making them stand out in the minds of tourists. In this context, marketers of tourism destinations endeavour to create an induced image based on their identity and distinctive characteristics.A number of authors have also recognized the complexity of tourism destinations and the need for coordination and cooperation among all tourism agents, in order to supply a satisfactory tourist product and be competitive in the tourism market. Therefore, tourism agents at the destination need to develop and integrate strategic marketing plans.The aim of this paper is to determine how cities of similar cultures use their resources with the purpose of developing a distinctive induced tourism image to attract tourists and the extent of coordination and cooperation among the various tourism agents of a destination in the process of induced image creation.In order to accomplish these aims, a comparative analysis of the induced image of two cultural cities is presented, Girona (Spain) and Perpignan (France). The induced image is assessed through the content analysis of promotional brochures and the extent of cooperation with in-depth interviews of the main tourism agents of these destinations.Despite the similarities of both cities in terms of tourism resources, results show the use of different attributes to configure the induced image of each destination, as well as a different configuration of the network of tourism agents that participate in the process of induced image creation
Resumo:
Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.
Resumo:
This article analyzes the implications of worker overestimation of productivity for firms in which incentives take the form of tournaments. Each worker overestimates his productivity but is aware of the bias in his opponent's self-assessment. The manager of the firm, on the other hand, correctly assesses workers' productivities and self-beliefs when setting tournament prizes. The article shows that, under a variety of circumstances, firms can benefit from worker positive self-image. The article also shows that worker positive self-image can improve welfare in tournaments. In contrast, workers' utility declines due to their own misguided choices.
Resumo:
Objective:To evaluate the evolution of mammographic image quality in the state of Rio de Janeiro on the basis of parameters measured and analyzed during health surveillance inspections in the period from 2006 to 2011.Materials and Methods:Descriptive study analyzing parameters connected with imaging quality of 52 mammography apparatuses inspected at least twice with a one-year interval.Results:Amongst the 16 analyzed parameters, 7 presented more than 70% of conformity, namely: compression paddle pressure intensity (85.1%), films development (72.7%), film response (72.7%), low contrast fine detail (92.2%), tumor mass visualization (76.5%), absence of image artifacts (94.1%), mammography-specific developers availability (88.2%). On the other hand, relevant parameters were below 50% conformity, namely: monthly image quality control testing (28.8%) and high contrast details with respect to microcalcifications visualization (47.1%).Conclusion:The analysis revealed critical situations in terms of compliance with the health surveillance standards. Priority should be given to those mammography apparatuses that remained non-compliant at the second inspection performed within the one-year interval.
Resumo:
OBJECTIVE: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. METHODS: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. RESULTS: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
Resumo:
Forensic intelligence has recently gathered increasing attention as a potential expansion of forensic science that may contribute in a wider policing and security context. Whilst the new avenue is certainly promising, relatively few attempts to incorporate models, methods and techniques into practical projects are reported. This work reports a practical application of a generalised and transversal framework for developing forensic intelligence processes referred to here as the Transversal model adapted from previous work. Visual features present in the images of four datasets of false identity documents were systematically profiled and compared using image processing for the detection of a series of modus operandi (M.O.) actions. The nature of these series and their relation to the notion of common source was evaluated with respect to alternative known information and inferences drawn regarding respective crime systems. 439 documents seized by police and border guard authorities across 10 jurisdictions in Switzerland with known and unknown source level links formed the datasets for this study. Training sets were developed based on both known source level data, and visually supported relationships. Performance was evaluated through the use of intra-variability and inter-variability scores drawn from over 48,000 comparisons. The optimised method exhibited significant sensitivity combined with strong specificity and demonstrates its ability to support forensic intelligence efforts.
Resumo:
Postprint (published version)