525 resultados para IPN HYDROGELS
Resumo:
Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers
Resumo:
Environmentally friendly biocomposites were successfully prepared by dissolving chitosan and cellulose in a NaOH/thiourea solvent with subsequent heating and film casting. Under the considered conditions, NaOH/thiourea led to chain depolymerization of both biopolymers without a dramatic loss of film forming capacities. Compatibility of both biopolymers in the biocomposite was firstly assessed through scanning electron microscopy, revealing an intermediate organization between cellulose fiber network and smoothness of pure chitosan. DSC analyses led to exothermic peaks close to 285 and 315 degrees C for the biocomposite, compared to the exothermic peaks of chitosan (275 degrees C) and cellulose (265 and 305 degrees C), suggesting interactions between chitosan and cellulose. Contact angle analyses pointed out the deformation that can occur at the surface due to the high affinity of the;e materials with water. T(2) NMR relaxometry behavior of biocomposites appeared to be dominated by chitosan. Other properties of films, as crystallinity, water sorption isotherms, among others, are also discussed. (C) 2010 Published by Elsevier Ltd.
Resumo:
Formulations containing poloxamer 407 (P407), carbopol 934P (C934P), and propolis extract (PE) were designed for the treatment of periodontal disease. Gelation temperature, in vitro drug release, rheology, hardness, compressibility, adhesiveness, mucoadhesion, and syringeability of formulations were determined. Propolis release from formulations was controlled by the phenomenon of relaxation of polymer chains. Formulations exhibited pseudoplastic flow and low degrees of thixotropy or rheopexy. In most samples, increasing the concentration of C934P content significantly increased storage modulus (G'), loss modulus (G ''), and dynamic viscosity (n') at 5 degrees C, G '' exceeded G'. At 25 and 37 degrees C, n' of each formulation depended on the oscillatory frequency. Formulations showed thermoresponsive behavior, existing as a liquid at room temperature and gel at 34-37 degrees C. Increasing the C934P content or temperature significantly increased formulation hardness, compressibility, and adhesiveness. The greatest mucoadhesion was noted in the formulation containing 15% P407 (w/w) and 0.25% C934P (w/w). The work of syringeability values of all formulations were similar and very desirable with regard to ease of administration. The data obtained in these formulations indicate a potentially useful role in the treatment of periodontitis and suggest they are worthy of clinical evaluation. (c) 2007 Wiley-Liss, Inc.
Resumo:
Um hidrogel foi desenvolvido a partir de dextrano 70 kDa (DEX-70) e praziquantel incorporado (PZQ) como fármaco modelo. Propriedades biofarmacêuticas, como solubilidade e velocidade de dissolução, foram analisadas no desenvolvimento do hidrogel. Além disso, o hidrogel também foi caracterizado por espectroscopia na região do infravermelho e calorimetria diferencial exploratória (DSC). Testes da taxa de intumescimento mostraram que o hidrogel intumesce lentamente, embora tenha sido mais rápido do que a taxa do polímero livre. Nos testes de dissolução, o hidrogel liberou o fármaco lenta e continuamente. Esta liberação lenta foi semelhante a observada nos testes de intumescimento e resultou em uma liberação controlada do fármaco. Assim, o dextrano 70 kDa é um polímero adequado para o desenvolvimento de hidrogéis como veículos para a liberação controlada de fármacos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chitin hydrogels of poly(vinylpyrrolidone) (VP) were prepared by means of the hydrogen peroxide graft copolymerization process. The effect of the VP grafted chain on water diffusion through the biopolymer was studied. Fourier transform infrared spectra of the VP-g-Ch showed an increase in the intensities of the hydroxyl and carbonyl stretching bands indicating a reduction in the hydrogen bonding of chitin. An investigation was undertaken regarding the adsorption of nickel(II) and cadmium(II) ions from aqueous solutions by the VP grafted chitin and the effects of the grafting degree on the Cd2+ and Ni2+ sorption were studied. The Cd2+ and Ni2+ adsorption equilibrium data correlate well with the Freundlich equation. The results indicate that the Ch-g-VP graft copolymer under investigation is a potentially powerful chelating material that can be employed for Ni2+ and Cd2+ ion removal from wastewater effluents. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Floating multiparticles for oral administration with different compositions were studied from a matricial polymeric system to obtain sustained release. The polymers used in the multiparticles constitution were methylceullose (MC) and hydroxypropylmethylcelullose phthalate (HPMCP) in several proportions. Spherical and isolated structures were obtained using HPMCP/MC in the range from 1:3 to 1: 13. The diameters of the floating multiparticles were in the range from 3 to 3.25 mm, while the non-floating particles were between 1.75 and 2.1 mm. The morphological analysis by confocal microscopy showed that the probable mechanism of drug release was the diffusion from the inner of particles to external media. The encapsulation of hydrophilic model substances (tartrazin and bordeaux S), showed that the maximum incorporation was about 38%, while for the lipophilic model substances (rifampicin) was 45%. The in vitro release of rifampicin in acid medium was dependent on the ratio HPMCP/MC. In alkaline medium the release followed a two-step profile, with slow release in the initial times and subsequent increase in the higher times The initial drug delivery profile was not dependent on the MC/HPMCP ratio and can be related with the release of the antibiotic from multiparticle inner caused by the swelling of polymers by the presence of water in the system. However, afterwards the release proceeds with typical profile of process involving hydrogels systems.
Resumo:
Purpose: This study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth. Methods: Eigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37 ± 2 °C for 48 ± 2. h (control); (2) storage in artificial saliva at 37 ± 2 °C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 °C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (α= .05). Results: In general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P< .05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34 ± 4.45 KHN) were statistically higher than those reached after thermal cycling (19.77 ± 4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva. Conclusion: Storage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested. © 2010 Japan Prosthodontic Society.
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. © 2013 American Chemical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)