907 resultados para ION EXCHANGE MATERIALS
Resumo:
The present paper reports a study of the extraction of HNO3 with Cyancx923 (C923)-n-heptane. A third phase appears at different aqueous HNO3 concentrations for various initial C923 concentrations. Data analysis indicates that almost all of HNO3 and H2O are extracted into the middle phase. More HNO3 and water at a fixed ratio are solubilized in the reverse micelles or microemulsion in the third phase, which leads to a sharp increase of their concentration. The effect of temperature on the phase behavior of the three-phase system has also been investigated.
Resumo:
The interfacial behavior of sec-nonylphenoxy acetic acid (CA-100) at various diluents/(H, Na)Cl interfaces was examined using the Du Nouy ring method. Different adsorption isotherms such as the Gibbs and Szyszkowski were in good agreement with the experimental data. The values of interfacial excess at saturated interface increase in the following order: n-heptane > kerosene > cyclohexane > CCl4 > toluene > benzene > chloroform. The effects of temperature, acidity, and ionic strength of the aqueous phase on the interfacial activity of CA- 100 were also examined. The interfacial-activity data were used to discuss the mechanism and kinetics of yttrium (Y) extraction.
Resumo:
The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.
Resumo:
Such physicochemical properties of sec-nonylphenoxy acetic acid (CA-100) as the solubility in water, acid dissociation constant in water, dimerization constant in heptane, and distribution constant in organic solvent-water were measured by two-phase titration. The extraction behaviors of scandium (III), yttrium (III), lanthanides (III), and divalent metal ions from hydrochloric acid solutions with CA-100 in heptane have been investigated, and the possibilities of separating scandium (yttrium) from lanthanides and divalent metal ions have been carefully discussed. The stoichiometries of the extracted metal complexes were investigated by the slope-analysis technique. The effect of the nature of diluent on the extraction of yttrium (III) with CA100 has been studied and correlated with the dielectric constant.
Resumo:
The extraction of zinc(II) and cadmium(II) from chloride solution by mixtures of primary amine N1923 and Cyanex272 (HA) was studied. The synergistic effect was observed for the extraction of zinc(II) while no synergistic effect for cadmium(II), which makes it possible to separate zine(II) and cadmium(II) with the mixtures. The results showed that zinc(II) was extracted as (RNH3Cl)(3) . ZnCIA instead of ZnA(2) . 2HA which was extracted by Cyanex272 alone. The extraction mechanism was discussed and the formation constants and thermodynamic functions were determined. The separation factors between zinc(II) and cadmium(II) were calculated.
Resumo:
It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.
Resumo:
The Yttrium(III) extraction kinetics and mechanism with secnonylphonoxy acetic acid (CA-100) were investigated by a constant interfacial cell with laminar flow. The studies of interfacial tension and solubility of extractant and effects of the stirring rate, temperature, specific interfacial area and species concentration on the extraction rate showed that the extraction regime was dependent on the extraction conditions and the most probable reaction zone was at the liquid-liquid interface. The rate equation of extracting yttrium by CA-100 in heptane was Rf = k[Y3+]((a))[H(2)A(2)]((o))(0.88)[H+]((a))(-1.08).
Resumo:
Methylene blue-intercalated a-zirconium phosphate (MBZrP) micro particles in deionized water were deposited onto the surface of graphite powder to prepare graphite powder-supported MBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite. The composite was used as electrode material to fabricate a surface-renewable, rigid, leak-free carbon ceramic composite electrode, bulk-modified with methylene blue (MB). In the configuration, alpha-zirconium phosphate was employed as a solid host for MB, which acted as a catalyst. Graphite powder ensured conductivity by percolation, the silicate provided a rigid porous backbone and the methyl groups endowed hydrophobicity and thus limited the wetting section of the modified electrode. Peak currents of the MBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled at high scan rates. Square-wave voltammetric study revealed that MBZrP immobilized in carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution with pH ranged from 0.44 to 2.94. In addition, the chemically modified electrode showed an electrocatalytic activity toward nitrite reduction at +0.15 V (vs. Ag/AgCl) in acidic aqueous solution (pH=0.44). The linear range and detection limit are 1 x 10(-6)-4 x 10(-3) mol L-1 and 1.5 x 10(-7) mol L-1, respectively.
Resumo:
Ethylene polymerization was carried out with zirconocene catalysts supported on montmorillonite (or functionalized montmorillonite). The functionalized montmorillonite was from simple ion exchange of [CH3O2CCH2NH3](+) (MeGlyH(+)) ions with interlamellar cations of layered montmorillonites. The functionalized montmorillonlites [high-purity montmorillonite (MMT)-MeGlyH(+)] had larger interlayer spacing (12.69 Angstrom) than montmorillonites without treatment (9.65 Angstrom). The zirconocene catalyst system [Cp2ZrCl2/methylaluminoxane (MAO)/MMT-MeGlyH(+)] had much higher Zr loading and higher activities than those of' other zirconocene catalyst systems (Cp2ZrCl2/MMT, Cp2ZrCl2/MMT-MeGlyH(+), Cp2ZrCl2/MAO/MMT, [CP2ZrCl](+)[BF4]/MMT, [Cp2ZrCl][BF4](-)/MMT-MeGlyH(+), [CP2ZrCl](+)[BF4](-)/MAO/MMT-MeGlyH(+), and [Cp2ZrCl](+)[BF4](-)/MAO/MMT). The polyethylenes with good bulk density were obtained from the catalyst systems, particularly (CP2ZrCl2/MAO/MMT-MeGlyH(1)). MeGlyH(+) and MAO seemed to play important roles for preparation of the supported zirconocenes and polymerization of ethylene. The difference in Zr loading and catalytic activity among the supported zirconocene catalysts is discussed.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.
Resumo:
The electrochemical SO2 sensor worked at the fixed potential and prepared with Nafion membrane as the solid electrolyte was studied. It v as observed that after Nafion membrane, was treated with H2SO4, the water-preserving ability of the membrane was increased. In turn, the performance of the sensor became stable. After lifetime test for 4 months, the performance of the sensor deceased slightly, Thus this kind of sensor may become a gas sensor for the practical application.
Resumo:
The L-a. a, oxidase of Agkistrodon blomhof fii ussurensis of Changbai Mountains in northeast of China has been separated by using ion-exchange and gel filtration techniques, This enzyme is composed of two subunits, the molecular weight of one subunit is about 36 000, the another is about 57 000, determined by sodium dodecyl sulfate-polyacryamide gel electrophoresis and matrix assisted laser desorption ion/time of flight mass spectrometry, The activity of L-a, a. oxidase determined using L-Leu as substrate. The optimal pH of the enzyme is 4. 5 similar to 5. 5 and 8 similar to 9. The UV-Visible absorption spectrum of L-a, a. oxidase shows the characteristics of flavor-proteins.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A poly(4-vinyl)pyridine (PVP)/Pd film electrode was constructed for the electrocatalytic detection of hydrazine. The preparation of the PVP/GC electrode was performed by electropolymerization of the monomer 4-vinylpyridine onto the surface of a glassy carbon electrode. Subsequently, palladium is electrodeposited onto the polymer modified electrode surface. The ion-exchange function of PVP polymer is helpful to this process in view of the tetrachlorapalladate anion. Compared with the Pd/GC electrode, the modified electrode displays a better mechanical stability in a flowing stream. The PVP/Pd film electrode exhibits higher sensitivity when detecting hydrazine with a detection limit of 0.026 ng (S/N=3).