894 resultados para INDUCE APOPTOSIS
Resumo:
The TTL.6 gene is a member of the tubulin-tyrosine ligase (TTL) family involved in apoptosis and preferentially expressed in the testis. We sequenced the coding region and part of the introns of TTL.6 in world wide human populations and five representativ
Resumo:
Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic c
Resumo:
Even though it generates healthy adults, nuclear transfer in mammals remains an inefficient process. Mainly attributed to abnormal reprograming of the donor chromatin, this inefficiency may also be caused at least partly by a specific effect of the clonin
Resumo:
Relatively little is known in relation to pathological changes of immune organs in fish when exposed to MC-LR. The ultrastructural alteration of lymphocytes was examined in the spleen and pronephros of grass carp Ctenopharyngodon idella injected experimentally with microcystin-LR. The fish were intraperitoneally injected with MC-LR at a dose of 50 mu g/kg body weight, and the spleen and pronephros were dissected out at 1, 2, 7, 14 and 21 days post intraperitoneal injection (dpi). Pathological changes were then examined by transmission electron microscopy. Apoptosis was detected only in lymphocytes in the spleen, with obvious apoptotic features observed at 2 dpi; pathological changes of lymphocytes in the pronephros were also serious with mitochondria being highly edematous. However, damaged lymphocytes were almost un-observed in the spleen and pronephros at 21 dpi. These findings suggest that MC-LR can induce toxic effect on immune organs in grass carp, and the spleen may be much more sensitive to MC-LR stimulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
C1q family proteins with C1q domain have been reported in vertebrates, but their biological roles are currently unknown. In this study, a C1q-like factor, designated Carassius auratus gibelio ovary-specific C1q-like factor (CagOC1q-like), was identified as a cortical granules component. Immunofluorescence localization revealed that the C1q family member was specifically expressed in follicular epithelial cells, and associated with cortical granules in fully grown oocytes. Moreover, it was discharged to the perivitelline space and egg envelope upon fertilization. As it is the first identified C1q family member that is expressed in follicular cells that surround oocyte, CagOC1q-like was applied to detection of follicular cell apoptosis and deletion. The entire cytological process of follicular cell apoptosis and deletion was clearly seen from double visualizations of follicular cells with CagOC1q-like immunofluorescence and apoptotic follicular cells labeled by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) during oocyte maturation and ovulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Except for the complement C1q, the immunological functions of other C1q family members have remained unclear. Here we describe zebrafish C1q-like, whose transcription and translation display a uniform distribution in early embryos, and are restricted to mid-hind brain and eye in later embryos. In vitro studies showed that C1q-like could inhibit the apoptosis induced by ActD and CHX in EPC cells, through repressing caspase 3/9 activities. Moreover, its physiological roles were studied by morpholino-mediated knockdown in zebrafish embryogenesis. In comparison with control embryos, the C1q-like knockdown embryos display obvious defects in the head and cramofacial development mediated through p53-induced apoptosis, which was confirmed by the in vitro transcribed C1q-like mRNA or p53 MO co-injection. TUNEL assays revealed extensive cell death, and caspase 3/9 activity measurement also revealed about two folds increase in C1q-like morphant embryos, which was inhibited by p53 MO co-injection. Real-time quantitative PCR showed the up-regulation expression of several apoptosis regulators such as p53, mdm2, p21, Box and caspase 3, and down-regulation expression of hbae1 in the C1q-like morphant embryos. Knockdown of C1q-like in zebrafish embryos decreased hemoglobin production and impaired the organization of mesencephalic vein and other brain blood vessels. Interestingly, exposure of zebrafish embryos to UV resulted in an increase in mRNA expression of C1q-like, whereas over-expression of C1q-like was not enough resist to the damage. Furthermore, C1q-like transcription was up-regulated in response to pathogen Aeromonas hydrophila, and embryo survival significantly decreased in the C1q-like morphants after exposure to the bacteria. The data suggested that C1q-like might play an antiapoptotic and protective role in inhibiting p53-dependent and caspase 3/9-mediated apoptosis during embryogenesis, especially in the brain development, and C1q-like should be a novel regulator of cell survival during zebrafish embryogenesis. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
When tobacco BY-2 cells were treated with 60 mu g/mL MC-RR for 5 d, time-dependent effects of MC-RR on the cells were observed. Morphological changes such as abnormal elongation, evident chromatin condensation and margination, fragmentation of nucleus and formation of apoptotic-like bodies suggest that 60 mu g/mL MC-RR induced rapid apoptosis in tobacco BY-2 cells. Moreover, there was a significant and rapid increase of ROS level before the loss of mitochondrial membrane potential (Delta Psi(m)) and the onset of cell apoptosis. Ascorbic acid (AsA), a major primary antioxidant, prevented the increase of ROS generation, blocked the decrease in Delta Psi(m) and subsequent cell apoptosis, indicating a critical role of ROS in serving as an important signaling molecule by causing a reduction of Delta Psi(m) and MC-RR-induced tobacco BY-2 cell apoptosis. In addition, a specific mitochondrial permeability transition pores (PTP) inhibitor, cyclosporin A (CsA), significantly blocked the MC-RR-induced ROS formation, loss of Delta Psi(m), as well as cell apoptosis when the cells were MC-RR stressed for 3 d, suggesting that PTP is involved in 60 mu g/mL MC-RR-induced tobacco cell apoptosis signalling process. Thus, we concluded that the mechanism of MC-RR-induced apoptosis signalling pathways in tobacco BY-2 cells involves not only the excess generation of ROS and oxidative stress, but also the opening of PTP inducing loss of mitochondrial membrane potential. (C) 2007 Published by Elsevier Ltd.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Delta psi m collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-kappa B activation and intracellular Ca2+ increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including antiinflammatory and anti-tumor activities. In this study, we expressed the beta-subunit of C-PC (ref to as C-POP) in Escherichia coli. We found that the recombinant C-PC/beta has anti-cancer properties. Under the treatment of 5 mu M of the recombinant C-PC/beta, four different cancer cell lines accrued high proliferation inhibition and apoptotic induction. Substantially, a lower response occurred in non-cancer cells. We investigated the mechanism by which C-PC/beta inhibits cancer cell proliferation and induces apoptosis. We found that the C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Under the treatment of the C-PC/beta, depolymerization of microtubules and actin-filaments were observed. The cells underwent apoptosis with an increase in caspase-3, and caspase-8 activities. The cell cycle was arrested at the G0/G1 phase under the treatment of C-PC/beta. In addition, the nuclear level of GAPDH decreased significantly. Decrease in the nuclear level of GAPDH prevents the cell cycle from entering into the S phase. Inhibition of cancer cell proliferation and induction of apoptosis may potentate the C-POP as a promising cancer prevention or therapy agent. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A rhabdovirus was observed from the diseased turbot (Scophthalmus maximus L.) with lethal syndrome. In this study, a carp leucocyte (CLC) cell line was used to investigate the infection process and cell death mechanism occurring during the virus infection. Strong cytopathogenic effect (CPE) and the morphological changes, such as extreme chromatin condensation, nucleus fragmentation, and apoptotic body formation, were observed under fluorescence microscopy after DAPI staining in the infected CLC cells. Transmission electron microscopy analysis showed cell shrinkage, plasma membrane blebbing, cytoplasm vacuolization, chromatin condensation, nuclear breakdown and formation of discrete apoptotic bodies. The bullet-shaped nucleocapsids were measured and ranged in size from 110 to 150 nm in length and 40 to 60 nm in diameter. And therefore the virus is called Scophthalmus maximus rhabdovirus (SMRV). Agarose gel electrophoresis analysis of the DNA extracted from infected cells showed typical DNA ladder in the course of SMRV infection. Flow cytometry analysis of SMRV infected CLC cells detected apoptotic peak in the virus infected CLC cells. Virus titre analysis and electron microscopic observation revealed that the virus replication fastigium was earlier than that of the apoptosis occurrence. No apoptosis was observed in the CLC infected with UV-inactivated SMRV. All these supported that SMRV infected CLC cells undergo apoptosis and the virus replication is necessary for apoptosis induction of CLC cells. (C) 2004 Published by Elsevier B.V.