916 resultados para Human genome
Resumo:
Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.
Resumo:
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
Resumo:
BACKGROUND: Staphylococcus aureus, a leading cause of chronic or acute infections, is traditionally considered an extracellular pathogen despite repeated reports of S. aureus internalization by a variety of non-myeloid cells in vitro. This property potentially contributes to bacterial persistence, protection from antibiotics and evasion of immune defenses. Mechanisms contributing to internalization have been partly elucidated, but bacterial processes triggered intracellularly are largely unknown. RESULTS: We have developed an in vitro model using human lung epithelial cells that shows intracellular bacterial persistence for up to 2 weeks. Using an original approach we successfully collected and amplified low amounts of bacterial RNA recovered from infected eukaryotic cells. Transcriptomic analysis using an oligoarray covering the whole S. aureus genome was performed at two post-internalization times and compared to gene expression of non-internalized bacteria. No signs of cellular death were observed after prolonged internalization of Staphylococcus aureus 6850 in epithelial cells. Following internalization, extensive alterations of bacterial gene expression were observed. Whereas major metabolic pathways including cell division, nutrient transport and regulatory processes were drastically down-regulated, numerous genes involved in iron scavenging and virulence were up-regulated. This initial adaptation was followed by a transcriptional increase in several metabolic functions. However, expression of several toxin genes known to affect host cell integrity appeared strictly limited. CONCLUSION: These molecular insights correlated with phenotypic observations and demonstrated that S. aureus modulates gene expression at early times post infection to promote survival. Staphylococcus aureus appears adapted to intracellular survival in non-phagocytic cells.
Resumo:
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10−12). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the ‘intermediate phenotype’ nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host–pathogen interaction.
Resumo:
The lack of a permissive cell culture system hampers the study of human parvovirus B19 (B19V). UT7/Epo is one of the few established cell lines that can be infected with B19V but generates none or few infectious progeny. Recently, hypoxic conditions or the use of primary CD36+ erythroid progenitor cells (CD36+ EPCs) have been shown to improve the infection. These novel approaches were evaluated in infection and transfection experiments. Hypoxic conditions or the use of CD36+ EPCs resulted in a significant acceleration of the infection/transfection and a modest increase in the yield of capsid progeny. However, under all tested conditions, genome encapsidation was impaired seriously. Further analysis of the cell culture virus progeny revealed that differently to the wild-type virus, the VP1 unique region (VP1u) was exposed partially and was unable to become further externalized upon heat treatment. The fivefold axes pore, which is used for VP1u externalization and genome encapsidation, might be constricted by the atypical VP1u conformation explaining the packaging failure. Although CD36+ EPCs and hypoxia facilitate B19V infection, large quantities of infectious progeny cannot be generated due to a failure in genome encapsidation, which arises as a major limiting factor for the in vitro propagation of B19V.
Resumo:
Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens including DNA, ribosomal P, Ro (SS-A), La (SS-B), and the spliceosome. Etiology is suspected to involve genetic and environmental factors. Evidence of genetic involvement includes: associations with HLA-DR3, HLA-DR2, Fcγ receptors (FcγR) IIA and IIIA, and hereditary complement component deficiencies, as well as familial aggregation, monozygotic twin concordance >20%, λs > 10, purported linkage at 1q41–42, and inbred mouse strains that consistently develop lupus. We have completed a genome scan in 94 extended multiplex pedigrees by using model-based linkage analysis. Potential [log10 of the odds for linkage (lod) > 2.0] SLE loci have been identified at chromosomes 1q41, 1q23, and 11q14–23 in African-Americans; 14q11, 4p15, 11q25, 2q32, 19q13, 6q26–27, and 12p12–11 in European-Americans; and 1q23, 13q32, 20q13, and 1q31 in all pedigrees combined. An effect for the FcγRIIA candidate polymorphism) at 1q23 (lod = 3.37 in African-Americans) is syntenic with linkage in a murine model of lupus. Sib-pair and multipoint nonparametric analyses also support linkage (P < 0.05) at nine loci detected by using two-point lod score analysis (lod > 2.0). Our results are consistent with the presumed complexity of genetic susceptibility to SLE and illustrate racial origin is likely to influence the specific nature of these genetic effects.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune multisystem inflammatory disease characterized by the production of pathogenic autoantibodies. Previous genetic studies have suggested associations with HLA Class II alleles, complement gene deficiencies, and Fc receptor polymorphisms; however, it is likely that other genes contribute to SLE susceptibility and pathogenesis. Here, we report the results of a genome-wide microsatellite marker screen in 105 SLE sib-pair families. By using multipoint nonparametric methods, the strongest evidence for linkage was found near the HLA locus (6p11-p21) [D6S257, logarithm of odds (lod) = 3.90, P = 0.000011] and at three additional regions: 16q13 (D16S415, lod = 3.64, P = 0.000022), 14q21–23 (D14S276, lod = 2.81, P = 0.00016), and 20p12 (D20S186, lod = 2.62, P = 0.00025). Another nine regions (1p36, 1p13, 1q42, 2p15, 2q21–33, 3cent-q11, 4q28, 11p15, and 15q26) were identified with lod scores ≥1.00. These data support the hypothesis that multiple genes, including one in the HLA region, influence susceptibility to human SLE.
Resumo:
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer’s disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent ρ° (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the ρ° cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five “AD” missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from ρ° cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
Resumo:
Human gene MAGE-1 encodes tumor-specific antigens that are recognized on melanoma cells by autologous cytolytic T lymphocytes. This gene is expressed in a significant proportion of tumors of various histological types, but not in normal tissues except male germ-line cells. We reported previously that reporter genes driven by the MAGE-1 promoter are active not only in the tumor cell lines that express MAGE-1 but also in those that do not. This suggests that the critical factor causing the activation of MAGE-1 in certain tumors is not the presence of the appropriate transcription factors. The two major MAGE-1 promoter elements have an Ets binding site, which contains a CpG dinucleotide. We report here that these CpG are demethylated in the tumor cell lines that express MAGE-1, and are methylated in those that do not express the gene. Methylation of these CpG inhibits the binding of transcription factors, as seen by mobility shift assay. Treatment with the demethylating agent 5-aza-2'-deoxycytidine activated gene MAGE-1 not only in tumor cell lines but also in primary fibroblasts. Finally, the overall level of CpG methylation was evaluated in 20 different tumor cell lines. It was inversely correlated with the expression of MAGE-1. We conclude that the activation of MAGE-1 in cancer cells is due to the demethylation of the promoter. This appears to be a consequence of a genome-wide demethylation process that occurs in many cancers and is correlated with tumor progression.
Resumo:
This thesis describes two newly sequenced B. longum subsp. longum genomes and subsequent comparative analysis with publicly available B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis genomes (Chapter 2). The acquired data revealed a closed pan-genome for this bifidobacterial species and furthermore facilitated the definition of the B. longum core genome. The comparative analysis also highlights differences in the potential metabolic abilities of all three sub-species. Interestingly, phylogenetic analysis of the B. longum core genome indicated the existence of a novel B. longum subspecies. Characterisation of restriction-modification systems from two B. longum subsp. longum strains is described in Chapter 3. These defence mechanisms limit the uptake of genetic material, which was successfully demonstrated for some of the identified systems. When these systems were by-passed by methylation of DNA prior to the transformation procedure, the resulting transformation efficiency of both B. longum subsp. longum strains was increased to a level that allowed for the generation of mutants via homologous recombination. Arabinoxylan metabolism by B. longum subsp. longum NCIMB 8809 was investigated in Chapter 4 of this thesis. Transcriptome analysis allowed the identification of a number of genes involved in the degradation, uptake and utilisation of arabinoxylan. Biochemical analysis revealed that three of the identified genes encode arabinofuranosidase activity. Phenotypic assessment of a number of insertion mutants in genes identified by the transcriptome analysis revealed the essential role of two of these enzymes in arabinoxylan metabolism, and a third enzyme in the metabolism of debranched arabinan. Furthermore, this investigation revealed that B. longum subsp. longum NCIMB 8809 does not completely degrade arabinoxylan, but utilises the arabinose substitutions only, while leaving the xylan backbone untouched.Finally, Chapter 5 outlines that B. longum subsp. longum NCIMB 8809 is capable of removing ferulic and p-coumaric acid substitutions that originate from arabinoxylan. Analysis of the genome sequence led to the identification of a candidate gene for this activity, which was subsequently cloned and expressed in E. coli. Biochemical analysis revealed that the enzyme, designated here as FaeA, is indeed capable of releasing both ferulic and p-coumaric acid from arabinoxylan. Furthermore, it is shown that a derivative of B. longum subsp. longum NCIMB 8809 carrying an insertion mutation in faeA had lost the ability to release ferulic and p-coumaric acid from arabinoxylan, and that growth of this mutant strain is negatively affected when cultivated on growth-limiting levels of arabinoxylan.
Resumo:
International audience
Resumo:
Lactococcus garvieae is a Gram-positive bacterium considered an important opportunistic emerging human pathogen and also a well-recognized fish pathogen. Here, we present the draft genome sequence of Lactococcus garvieae strain 21881 (2,164,557 bp, with a G+C content of 37.9%), which represents the first report of a genome sequence on Lactococcus garvieae.