508 resultados para Hilbert
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
This research aims to elucidate some of the historical aspects of the idea of infinity during the creation of calculus and set theory. It also seeks to raise discussions about the nature of infinity: current infinite and potential infinite. For this, we conducted a survey with a qualitative approach in the form of exploratory study. This study was based on books of Mathematics' History and other scientific works such as articles, theses and dissertations on the subject. This work will bring the view of some philosophers and thinkers about the infinite, such as: Pythagoras, Plato, Aristotle, Galilei, Augustine, Cantor. The research will be presented according to chronological order. The objective of the research is to understand the infinite from ancient Greece with the paradoxes of Zeno, during the time which the conflict between the conceptions atomistic and continuity were dominant, and in this context that Zeno launches its paradoxes which contradict much a concept as another, until the theory Cantor set, bringing some paradoxes related to this theory, namely paradox of Russell and Hilbert's paradox. The study also presents these paradoxes mentioned under the mathematical point of view and the light of calculus and set theory
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
This work develops a computational approach for boundary and initial-value problems by using operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds for errors in the solutions and in their derivatives can be estimated providing accuracy measures.
Resumo:
Vortex-induced motion (VIM) is a specific way for naming the vortex-induced vibration (VIV) acting on floating units. The VIM phenomenon can occur in monocolumn production, storage and offloading system (MPSO) and spar platforms, structures presenting aspect ratio lower than 4 and unity mass ratio, i.e., structural mass equal to the displaced fluid mass. These platforms can experience motion amplitudes of approximately their characteristic diameters, and therefore, the fatigue life of mooring lines and risers can be greatly affected. Two degrees-of-freedom VIV model tests based on cylinders with low aspect ratio and small mass ratio have been carried out at the recirculating water channel facility available at NDF-EPUSP in order to better understand this hydro-elastic phenomenon. The tests have considered three circular cylinders of mass ratio equal to one and different aspect ratios, respectively L/D = 1.0, 1.7, and 2.0, as well as a fourth cylinder of mass ratio equal to 2.62 and aspect ratio of 2.0. The Reynolds number covered the range from 10 000 to 50 000, corresponding to reduced velocities from 1 to approximately 12. The results of amplitude and frequency in the transverse and in-line directions were analyzed by means of the Hilbert-Huang transform method (HHT) and then compared to those obtained from works found in the literature. The comparisons have shown similar maxima amplitudes for all aspect ratios and small mass ratio, featuring a decrease as the aspect ratio decreases. Moreover, some changes in the Strouhal number have been indirectly observed as a consequence of the decrease in the aspect ratio. In conclusion, it is shown that comparing results of small-scale platforms with those from bare cylinders, all of them presenting low aspect ratio and small mass ratio, the laboratory experiments may well be used in practical investigation, including those concerning the VIM phenomenon acting on platforms. [DOI: 10.1115/1.4006755]
Resumo:
We study the power series ring R= K[[x1,x2,x3,...]]on countably infinitely many variables, over a field K, and two particular K-subalgebras of it: the ring S, which is isomorphic to an inverse limit of the polynomial rings in finitely many variables over K, and the ring R', which is the largest graded subalgebra of R. Of particular interest are the homogeneous, finitely generated ideals in R', among them the generic ideals. The definition of S as an inverse limit yields a set of truncation homomorphisms from S to K[x1,...,xn] which restrict to R'. We have that the truncation of a generic I in R' is a generic ideal in K[x1,...,xn]. It is shown in Initial ideals of Truncated Homogeneous Ideals that the initial ideal of such an ideal converge to the initial ideal of the corresponding ideal in R'. This initial ideal need no longer be finitely generated, but it is always locally finitely generated: this is proved in Gröbner Bases in R'. We show in Reverse lexicographic initial ideals of generic ideals are finitely generated that the initial ideal of a generic ideal in R' is finitely generated. This contrast to the lexicographic term order. If I in R' is a homogeneous, locally finitely generated ideal, and if we write the Hilbert series of the truncated algebras K[x1,...,xn] module the truncation of I as qn(t)/(1-t)n, then we show in Generalized Hilbert Numerators that the qn's converge to a power series in t which we call the generalized Hilbert numerator of the algebra R'/I. In Gröbner bases for non-homogeneous ideals in R' we show that the calculations of Gröbner bases and initial ideals in R' can be done also for some non-homogeneous ideals, namely those which have an associated homogeneous ideal which is locally finitely generated. The fact that S is an inverse limit of polynomial rings, which are naturally endowed with the discrete topology, provides S with a topology which makes it into a complete Hausdorff topological ring. The ring R', with the subspace topology, is dense in R, and the latter ring is the Cauchy completion of the former. In Topological properties of R' we show that with respect to this topology, locally finitely generated ideals in R'are closed.
Resumo:
Atomic physics plays an important role in determining the evolution stages in a wide range of laboratory and cosmic plasmas. Therefore, the main contribution to our ability to model, infer and control plasma sources is the knowledge of underlying atomic processes. Of particular importance are reliable low temperature dielectronic recombination (DR) rate coefficients. This thesis provides systematically calculated DR rate coefficients of lithium-like beryllium and sodium ions via ∆n = 0 doubly excited resonant states. The calculations are based on complex-scaled relativistic many-body perturbation theory in an all-order formulation within the single- and double-excitation coupled-cluster scheme, including radiative corrections. Comparison of DR resonance parameters (energy levels, autoionization widths, radiative transition probabilities and strengths) between our theoretical predictions and the heavy-ion storage rings experiments (CRYRING-Stockholm and TSRHeidelberg) shows good agreement. The intruder state problem is a principal obstacle for general application of the coupled-cluster formalism on doubly excited states. Thus, we have developed a technique designed to avoid the intruder state problem. It is based on a convenient partitioning of the Hilbert space and reformulation of the conventional set of pairequations. The general aspects of this development are discussed, and the effectiveness of its numerical implementation (within the non-relativistic framework) is selectively illustrated on autoionizing doubly excited states of helium.
Resumo:
The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.
Resumo:
Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.
Resumo:
Questa dissertazione si concentra sul dibattito circa l’essenza della matematica a partire dalla nascita delle geometrie non euclidee. Essa è una scienza della natura o una costruzione (e dunque una libera invenzione) della mente umana? Trattando altresì della crisi dei fondamenti, e tenendo a mente le posizioni platoniste e costruttiviste, questa tesi analizza le risposte che, da fine Ottocento in poi, diedero Jules-Henri Poincaré, Bertrand Russell, L.E.J. Brouwer e David Hilbert, e con loro le varie correnti convenzionaliste, logiciste, intuizioniste e formaliste.
Resumo:
Deutsche Version: Zunächst wird eine verallgemeinerte Renormierungsgruppengleichung für die effektiveMittelwertwirkung der EuklidischenQuanten-Einstein-Gravitation konstruiert und dann auf zwei unterschiedliche Trunkierungen, dieEinstein-Hilbert-Trunkierung und die$R^2$-Trunkierung, angewendet. Aus den resultierendenDifferentialgleichungen wird jeweils die Fixpunktstrukturbestimmt. Die Einstein-Hilbert-Trunkierung liefert nebeneinem Gaußschen auch einen nicht-Gaußschen Fixpunkt. Diesernicht-Gaußsche Fixpunkt und auch der Fluß in seinemEinzugsbereich werden mit hoher Genauigkeit durch die$R^2$-Trunkierung reproduziert. Weiterhin erweist sichdie Cutoffschema-Abhängigkeit der analysierten universellenGrößen als äußerst schwach. Diese Ergebnisse deuten daraufhin, daß dieser Fixpunkt wahrscheinlich auch in der exaktenTheorie existiert und die vierdimensionaleQuanten-Einstein-Gravitation somit nichtperturbativ renormierbar sein könnte. Anschließend wird gezeigt, daß der ultraviolette Bereich der$R^2$-Trunkierung und somit auch die Analyse des zugehörigenFixpunkts nicht von den Stabilitätsproblemen betroffen sind,die normalerweise durch den konformen Faktor der Metrikverursacht werden. Dadurch motiviert, wird daraufhin einskalares Spielzeugmodell, das den konformen Sektor einer``$-R+R^2$''-Theorie simuliert, hinsichtlich seinerStabilitätseigenschaften im infraroten (IR) Bereichstudiert. Dabei stellt sich heraus, daß sich die Theorieunter Ausbildung einer nichttrivialen Vakuumstruktur auf dynamische Weise stabilisiert. In der Gravitation könnteneventuell nichtlokale Invarianten des Typs $intd^dx,sqrt{g}R (D^2)^{-1} R$ dafür sorgen, daß der konformeSektor auf ähnliche Weise IR-stabil wird.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
Diese Arbeit befasst sich mit Eduard Study (1862-1930), einem der deutschen Geometer um die Jahrhundertwende, der seine Zeit zum Einen durch seine Kontakte zu Klein, Hilbert, Engel, Lie, Gordan, Halphen, Zeuthen, Einstein, Hausdorff und Weyl geprägt hat, zum Anderen in ihr aber auch für seine beißenden und stilistisch ausgefeilten Kritiken ebenso berühmt wie berüchtigt war. Da sich Study mit einer Vielzahl mathematischer Themen beschäftigt hat, führen wir zunächst in die von ihm bearbeiteten Gebiete der Geometrie des 19. Jahrhunderts ein (analytische und synthetische Geometrie im Sinne von Monge, Poncelet, Plücker und Reye, Invariantentheorie Clebsch-Gordan'scher Prägung, abzählende Geometrie von Chasles und Halphen, die Werke Lie's und Grassmann’s, Liniengeometrie sowie Axiomatik und Grundlagenkrise). In seiner darauf folgenden Biographie finden sich als zentrale Stellen seine Habilitation bei Klein über die Chasles’sche Vermutung, sein Streit mit Zeuthen darüber als eine der Debatten der Mathematischen Annalen (aus der er historisch zwar nicht, mathematisch aber tatsächlich als Gewinner hätte herausgehen müssen, wie wir an der Lösung des Problems durch van der Waerden sehen werden) und seine Auseinandersetzungen als etablierter Bonner Professor mit Engel über Lie, Weyl über Invariantentheorie, zahlreichen philosophischen Richtungen über das Raumproblem, Pasch’s Axiomatik, Hilbert’s Formalismus sowie Brouwer’s und Weyl’s Intuitionismus.
Resumo:
Der ungarische Mathematiker Friedrich Riesz studierte und forschte in den mathematischen Milieus von Budapest, Göttingen und Paris. Die vorliegende Arbeit möchte zeigen, daß die Beiträge von Riesz zur Herausbildung eines abstrakten Raumbegriffs durch eine Verknüpfung von Entwicklungen aus allen drei mathematischen Kulturen ermöglicht wurden, in denen er sich bewegt hat. Die Arbeit konzentriert sich dabei auf den von Riesz 1906 veröffentlichten Text „Die Genesis des Raumbegriffs". Sowohl für seine Fragestellungen als auch für seinen methodischen Zugang fand Riesz vor allem in Frankreich und Göttingen Anregungen: Henri Poincarés Beiträge zur Raumdiskussion, Maurice Fréchets Ansätze einer abstrakten Punktmengenlehre, David Hilberts Charakterisierung der Stetigkeit des geometrischen Raumes. Diese Impulse aufgreifend suchte Riesz ein Konzept zu schaffen, das die Forderungen von Poincaré, Hilbert und Fréchet gleichermaßen erfüllte. So schlug Riesz einen allgemeinen Begriff des mathematischen Kontinuums vor, dem sich Fréchets Konzept der L-Klasse, Hilberts Mannigfaltigkeitsbegriff und Poincarés erfahrungsgemäße Vorstellung der Stetigkeit des ‚wirklichen' Raumes unterordnen ließen. Für die Durchführung seines Projekts wandte Riesz mengentheoretische und axiomatische Methoden an, die er der Analysis in Frankreich und der Geometrie bei Hilbert entnommen hatte. Riesz' aufnahmebereite Haltung spielte dabei eine zentrale Rolle. Diese Haltung kann wiederum als ein Element der ungarischen mathematischen Kultur gedeutet werden, welche sich damals ihrerseits stark an den Entwicklungen in Frankreich und Deutschland orientierte. Darüber hinaus enthält Riesz’ Arbeit Ansätze einer konstruktiven Mengenlehre, die auf René Baire zurückzuführen sind. Aus diesen unerwarteten Ergebnissen ergibt sich die Aufgabe, den Bezug von Riesz’ und Baires Ideen zur späteren intuitionistischen Mengenlehre von L.E.J. Brouwer und Hermann Weyl weiter zu erforschen.