905 resultados para Higher Order Shear Deformation Models
Resumo:
In situ UV-Iaser ablation Ar-40/(39) Ar geochronological and geochemical data, together with rock and mineral compositional data, have been determined from pseudotachylyte and surrounding mylonitic gneiss associated with the UHP whiteschists of the Dora Maira Massif, Italy. Several generations of fresh pseudotachylyte occur as irregular veins up to a few cur thick both parallel and at high angles to the foliation. Whole rock XRF data collected from representative lithologies of mylonitic gneiss are uniformly consistent with a mildly alkalic granitic protolith. Minimal compositional variation is observed between the pseudotachylyte and its surrounding mylonitic gneiss. The pseudotachylyte contains newly crystallized grains of biotite and K-feldspar in a matrix of glass with partially fused grains of quartz, zircon, apatite, and titanite. Electron microprobe analyses of the glass show significant compositional variation that is probably strongly influenced by micrometer-scale changes in mineralogy. UV-Iaser ablation ICP-MS traverses across the mylonitic gneiss-pseudotachylyte contact are consistent with cataclastic communition of REE carriers such as epidote, monazite, allanite, zircon, and apatite before melting as an efficient mechanism of REE homogenization in the pseudotachylyte. The 40Ar/39Ar data from one band of pseudotachylyte indicate formation at 20.1 +/- 0.5 Ma, when the mylonitic gneisses were already in a near surface position. The variable effects of top-to-the-west shear deformation within outcrops of the coesite-bearing unit are reflected in localized zones of protomylonite, cataclasite, ultracataclasite, and pseudotachylyte. Preservation of several generations of pseudotachylyte suggests that seismic events may have played a significant role in triggering late unroofing of the UHP rocks. It is speculated that deeper crustal seismic events potentially played a role in the unroofing of the UHP rocks at earlier stages in their exhumation history. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.
Resumo:
We calculate the production of two b-quark pairs in hadron collisions. Sources of multiple pairs are multiple interactions and higher order perturbative QCD mechanisms. We subsequently investigate the competing effects of multiple b-pair production on measurements of CP violation: (i) the increase in event rate with multiple b-pair cross sections which may reach values of the order of 1 b in the presence of multiple interactions and (ii) the dilution of b versus b tagging efficiency because of the presence of events with four B mesons. The impact of multiple B-meson production is small unless the cross section for producing a single pair exceeds 1 mb. We show that even for larger values of the cross section the competing effects (i) and (ii) roughly compensate so that there is no loss in the precision with which CP-violating CKM angles can be determined.
Resumo:
We present an update of neutral Higgs boson decays into bottom quark pairs in the minimal supersymmetric extension of the standard model. In particular the resummation of potentially large higher-order corrections due to the soft supersymmetry (SUSY) breaking parameters Ab and is extended. The remaining theoretical uncertainties due to unknown higher-order SUSY-QCD corrections are analyzed quantitatively.
Resumo:
Current measures of ability emotional intelligence (EI)--including the well-known Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT)--suffer from several limitations, including low discriminant validity and questionable construct and incremental validity. We show that the MSCEIT is largely predicted by personality dimensions, general intelligence, and demographics having multiple R's with the MSCEIT branches up to .66; for the general EI factor this relation was even stronger (Multiple R = .76). As concerns the factor structure of the MSCEIT, we found support for four first-order factors, which had differential relations with personality, but no support for a higher-order global EI factor. We discuss implications for employing the MSCEIT, including (a) using the single branches scores rather than the total score, (b) always controlling for personality and general intelligence to ensure unbiased parameter estimates in the EI factors, and (c) correcting for measurement error. Failure to account for these methodological aspects may severely compromise predictive validity testing. We also discuss avenues for the improvement of ability-based tests.
Resumo:
In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.
Resumo:
Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohn’s disease. Results: In the case of a binary (affected/unaffected) trait, the parallel workflow of MBMDR-3.0.3 analyzes all gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999 permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s disease (CD) data. Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the context of Crohn’s disease, MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and could be explained from a biological point of view. This demonstrates the power of our software to find relevant phenotype-genotype higher-order associations.
Resumo:
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Resumo:
The reasons why we care about soil fauna are related to their intrinsic, utilitarian and functional values. The intrinsic values embrace aesthetic or moral reasons for conserving below-ground biodiversity. Unfortunately, the protection of soil invertebrates has rarely been a criterion for avoiding changes in land use and management. Utilitarian, or direct use values, have been investigated more extensively for fungi, bacteria and marine invertebrates than for soil fauna. However, some traditional remedies, novel enzymes and pharmaceutical compounds have been derived from earthworms, termites and other groups, and gut symbionts may provide microbial strains with interesting properties for biotechnology. The functional importance of soil invertebrates in ecosystem processes has been a major focus of research in recent decades. It is suggested herein that it is rarely possible to identify the role of soil invertebrates as rate determinants of soil processes at plot and ecosystem scales of hectares and above because other biophysical controls override their effects. There are situations, however, where the activities of functional groups of soil animals, even of species, are synchronised in space or time by plant events, resource inputs, seasonality or other perturbations to the system, and their emergent effects are detectable as higher order controls.
Resumo:
Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).
Resumo:
This study was conducted at colleges in three countries (United States, Venezuela, and Spain) and across three academic disciplines (engineering, education, and business), to examine how experienced faculty define competencies for their discipline, and design instructional interaction for online courses. A qualitative research design employing in-depth interviews was selected. Results show that disciplinary knowledge takes precedence when faculty members select competencies to be developed in online courses for their respective professions. In all three disciplines, the design of interaction to correspond with disciplinary competencies was often influenced by contextual factors that modify faculty intention. Therefore, instructional design will vary across countries in the same discipline to address the local context, such as the needs and expectations of the learners, faculty perspectives, beliefs and values, and the needs of the institution, the community, and country. The three disciplines from the three countries agreed on the importance of the following competencies: knowledge of the field, higher order cognitive processes such as critical thinking, analysis, problem solving, transfer of knowledge, oral and written communication skills, team work, decision making, leadership and management skills, indicating far more similarities in competencies than differences between the three different applied disciplines. We found a lack of correspondence between faculty¿s intent to develop collaborative learning skills and the actual development of them. Contextual factors such as faculty prior experience in design, student reluctance to engage in collaborative learning, and institutional assessment systems that focus on individual performance were some of these reasons.
Resumo:
The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination tasks) we report reaction time asymmetries between expansion and contraction. Power functions were fitted to the data. While an exponent of 0.5 accounted for the expansion data better, a value of unity yielded the best fit for the contraction data. Instead of interpreting these differences as corresponding to different higher order motion detectors, we regard these findings as reflecting the fact that expansion and contraction tap two distinct psychophysical input channels underlying the processing of fast and slow velocities respectively.
Resumo:
The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions.