931 resultados para Heat dissipation rate
Resumo:
Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as
Resumo:
In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.
Resumo:
In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.
Resumo:
Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.
Resumo:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.
Resumo:
The investigation is focused on the wear behaviour at elevated test temperature of composite Ni–P/SiC deposit, with varying concentration of the reinforcing SiC particles. The phase evolution measured by X-ray diffraction suggests slight crystallisation during wear testing at 200 °C. In coating without reinforcing particles, adhesive wear is accompanied by microcracks. The thermal heat generated and the cyclic loading could have induced sub-surface microcracks. Owing to the effective matrix-ceramics system in composite coatings, fine grooves, abrasive polishing and uniform wearing are observed. Reinforcing particles in the matrix hinder microcrack formation and significantly reduce the wear rate. Triboxidation is confirmed from energy dispersive X-ray spectrometry.
Resumo:
Thesis (Ph. D.)--University of Washington, 1998
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.
Resumo:
To investigate the thennal effects of latent heat in hydrothennal settings, an extension was made to the existing finite-element numerical modelling software, Aquarius. The latent heat algorithm was validated using a series of column models, which analysed the effects of penneability (flow rate), thennal gradient, and position along the two-phase curve (pressure). Increasing the flow rate and pressure increases displacement of the liquid-steam boundary from an initial position detennined without accounting for latent heat while increasing the thennal gradient decreases that displacement. Application to a regional scale model of a caldera-hosted hydrothennal system based on a representative suite of calderas (e.g., Yellowstone, Creede, Valles Grande) led to oscillations in the model solution. Oscillations can be reduced or eliminated by mesh refinement, which requires greater computation effort. Results indicate that latent heat should be accounted for to accurately model phase change conditions in hydrothennal settings.
Resumo:
Central Governor Model (CGM) suggests that perturbations in the rate of heat storage (AS) are centrally integrated to regulate exercise intensity in a feed-forward fashion to prevent excessive thermal strain. We directly tested the CGM by manipulating ambient temperature (Tam) at 20-minute intervals from 20°C to 35°C, and returning to 20°C, while cycling at a set rate of perceived exertion (RPE). The synchronicity of power output (PO) with changes in HS and Tam were quantified using Auto-Regressive Integrated Moving Averages analysis. PO fluctuated irregularly but was not significantly correlated to changes in thermo physiological status. Repeated measures indicated no changes in lactate accumulation. In conclusion, real time dynamic sensation of Tam and integration of HS does not directly influence voluntary pacing strategies during sub-maximal cycling at a constant RPE while non-significant changes in blood lactate suggest an absence of peripheral fatigue.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.
Resumo:
The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.
Resumo:
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world’s electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, the US consumer will favor energy sources that can satisfy the need for electricity and other energy-intensive products (1) on a sustainable basis with minimal environmental impact, (2) with enhanced reliability and safety and (3) competitive economics. Given that advances are made to fully apply the potential benefits of nuclear energy systems, the next generation of nuclear systems can provide a vital part of a long-term, diversified energy supply. The Department of Energy has begun research on such a new generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals [1]. These future nuclear power systems will require advances in materials, reactor physics as well as heat transfer to realize their full potential. In this paper, a summary of these advanced nuclear power systems is presented along with a short synopsis of the important heat transfer issues. Given the nature of research and the dynamics of these conceptual designs, key aspects of the physics will be provided, with details left for the presentation.