989 resultados para Heart-assist devices
Resumo:
Recommendation systems have been growing in number over the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. These approaches contain strengths and weaknesses that need to be evaluated according to the knowledge area in which the system is going to be implemented. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.
Resumo:
In this paper we present a mobile recommendation and planning system, named PSiS Mobile. It is designed to provide effective support during a tourist visit through context-aware information and recommendations about points of interest, exploiting tourist preferences and context. Designing a tool like this brings several challenges that must be addressed. We discuss how these challenges have been overcame, present the overall system architecture, since this mobile application extends the PSiS project website, and the mobile application architecture.
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device (WDM) for the visible light spectrum. The WDM device is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO heterostructure in which the generated photocurrent at different values of the applied bias can be assigned to the different optical signals. The device was characterized through spectral response measurements, under different electrical bias. Demonstration of the device functionality for WDM applications was done with three different input channels covering wavelengths within the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. The influence of the optical power density was also analysed. An electrical model, supported by a numerical simulation explains the device operation. Short range optical communications constitute the major application field, however other applications are also foreseen.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
The objective of the study was to describe seasonality of hospitalizations for heart failure in tropical climate as it has been described in cold climates. Seasonal Auto-regressive Integrated Moving-Average model was applied to time-series data of heart failure hospitalizations between 1996 and 2004 in Niteroi (Southeastern Brazil), collected from the Brazilian National Health Service Database. The standard seasonal variation was obtained by means of moving-average filtering and averaging data. The lowest and the highest annual hospital admissions were 507 (1997) and 849 (2002), respectively; the lowest and the highest monthly rates were 419 (December) and 681 (October), respectively. Peak admission rates were seen during the fall and winter. Although weak, the seasonality observed indicates that slight variations result in increased hospitalizations for heart failure.
Resumo:
The scientific evidence supporting the management of the chronically ill in a positive psychological perspective in opposition to traditional pathological approach is scarce. This study examines issues associated with recovery of health status in heart failure, in particular hope, affection, and happiness. We use a longitudinal study of 128 symptomatic patients who after medical intervention reported improved quality of life and function at 3-month follow-up. We evaluated the contribution of happiness, hope and affection, individually and as a whole, in the quality of life and functionality of individuals with heart failure. Happiness (Subjective Happiness Scale), Hope (HOPE Scale), and affection (PANAS (positive and negative affect schedule)) were determined before medical intervention. Individually, we found that happiness is correlated with the quality of life and functionality, hope to self-efficacy dimension of the quality of life scale, positive affect to functionality and negative affect with symptoms dimension, quality of life dimension, and overall sum of the quality of life scale. Overall, we found that happiness has a unique contribution to the quality of life, except in self-efficacy dimension where hope takes this contribution and positive affect has a unique contribution to the functionality in this short-term follow-up. The results highlight the importance of positive variables to health outcomes for people with heart failure and should be considered in intervention programs for this syndrome.
Resumo:
The purpose of this paper is the design of an optoelectronic circuit based on a-SiC technology, able to act simultaneously as a 4-bit binary encoder or a binary decoder in a 4-to-16 line configurations and show multiplexer-based logical functions. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n multilayered structure produced by PECVD. To analyze it under information-modulated wave (color channels) and uniform irradiation (background) four monochromatic pulsed lights (input channels): red, green, blue and violet shine on the device. Steady state optical bias was superimposed separately from the front and the back sides, and the generated photocurrent was measured. Results show that the devices, under appropriate optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development providing the possibility for selective removal of useless wavelengths. The logic functions needed to construct any other complex logic functions are the NOT, and both or either an AND or an OR. Any other complex logic function that might be found can also be used as building blocks to achieve the functions needed for the retrieval of channels within the WDM communication link. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
OBJECTIVE To analyze whether sociodemographic, occupational, and health-related data are associated with the use of hearing protection devices at work, according to gender. METHODS A cross-sectional study was conducted in 2006, using a random sample of 2,429 workers, aged between 18 and 65 years old, from residential sub-areas in Salvador, BA, Northeastern Brazil. Questionnaires were used to obtain sociodemographic, occupational, and health-related data. Workers who reported that they worked in places where they needed to shout in order to be heard were considered to be exposed to noise. Exposed workers were asked whether they used hearing protection devices, and if so, how frequently. Analyses were conducted according to gender, with estimates made about prevalence of the use of hearing protection devices, prevalence ratios, and their respective 95% confidence intervals. RESULTS Twelve percent (12.3%) of study subjects reported that they were exposed to noise while working. Prevalence of the use of hearing protection devices was 59.3% for men and 21.4% for women. Men from higher socioeconomic levels (PR = 1.47; 95%CI 1.14;1.90) and who had previous audiometric tests (PR = 1.47; 95%CI 1.15;1.88) were more likely to use hearing protection devices. For women, greater perceived safety was associated with the use of protection devices (PR = 2.92; 95%CI 1.34;6.34). This perception was specifically related to the presence of supervisors committed to safety (PR = 2.09; 95%CI 1.04;4.21), the existence of clear rules to prevent workplace injuries (PR = 2.81; 95%CI 1.41;5.59), and whether they were informed about workplace safety (PR = 2.42; 95%CI 1.23;4.76). CONCLUSIONS There is a gender bias regarding the use of hearing protection devices that is less favorable to women. The use of such devices among women is positively influenced by their perception of a safe workplace, suggesting that gender should be considered as a factor in hearing conservation programs.
Resumo:
In this paper the authors intend to demonstrate the utilization of remote experimentation (RE) using mobile computational devices in the Science areas of the elementary school, with the purpose to develop practices that will help in the assimilation process of the subjects taught in classroom seeking to interlink them with the daily students? activities. Allying mobility with RE we intend to minimize the space-temporal barrier giving more availability and speed in the information access. The implemented architecture utilizes technologies and freely distributed softwares with open code resources besides remote experiments developed in the Laboratory of Remote Experimentation (RExLab) of Federal University of Santa Catarina (UFSC), in Brazil, through the physical computation platform of the ?open hardware of construction of our own. The utilization of open code computational tools and the integration of hardware to the 3D virtual worlds, accessible through mobile devices, give to the project an innovative face with a high potential for reproducibility and reusability.
Resumo:
In this paper we present results about the functioning of a multilayered a-SiC:H heterostructure as a device for wavelength-division demultiplexing of optical signals. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photogenerated carriers. Band gap engineering was used to adjust the photogeneration and recombination rates profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption and carrier collection in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. This photocurrent is used as an input for a demux algorithm based on the voltage controlled sensitivity of the device. The device functioning is explained with results obtained by numerical simulation of the device, which permit an insight to the internal electric configuration of the double heterojunction.These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photocapacitance due to the accumulation of space charge localized at the internal junction. The existence of a direct relation between the experimentally observed capacitive effects of the double diode and the quality of the semiconductor materials used to form the internal junction is highlighted.
Resumo:
Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimentally and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing capacitance to control the power delivered to the load.