889 resultados para Harmonic spaces
Resumo:
Malignant or benign tumors may be ablated with high‐intensity focused ultrasound (HIFU). This technique, known as focused ultrasound surgery (FUS), has been actively investigated for decades, but slow to be implemented and difficult to control due to lack of real‐time feedback during ablation. Two methods of imaging and monitoring HIFU lesions during formation were implemented simultaneously, in order to investigate the efficacy of each and to increase confidence in the detection of the lesion. The first, Acousto‐Optic Imaging (AOI) detects the increasing optical absorption and scattering in the lesion. The intensity of a diffuse optical field in illuminated tissue is mapped at the spatial resolution of an ultrasound focal spot, using the acousto‐optic effect. The second, Harmonic Motion Imaging (HMI), detects the changing stiffness in the lesion. The HIFU beam is modulated to force oscillatory motion in the tissue, and the amplitude of this motion, measured by ultrasound pulse‐echo techniques, is influenced by the stiffness. Experiments were performed on store‐bought chicken breast and freshly slaughtered bovine liver. The AOI results correlated with the onset and relative size of forming lesions much better than prior knowledge of the HIFU power and duration. For HMI, a significant artifact was discovered due to acoustic nonlinearity. The artifact was mitigated by adjusting the phase of the HIFU and imaging pulses. A more detailed model of the HMI process than previously published was made using finite element analysis. The model showed that the amplitude of harmonic motion was primarily affected by increases in acoustic attenuation and stiffness as the lesion formed and the interaction of these effects was complex and often counteracted each other. Further biological variability in tissue properties meant that changes in motion were masked by sample‐to‐sample variation. The HMI experiments predicted lesion formation in only about a quarter of the lesions made. In simultaneous AOI/HMI experiments it appeared that AOI was a more robust method for lesion detection.
Resumo:
Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.
Resumo:
An extension to the Boundary Contour System model is proposed to account for boundary completion through vertices with arbitrary numbers of orientations, in a manner consistent with psychophysical observartions, by way of harmonic resonance in a neural architecture.
Resumo:
An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.
Resumo:
The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.
Resumo:
A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images.
Resumo:
We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.
Resumo:
Nonlinear metamaterials have been predicted to support new and exciting domains in the manipulation of light, including novel phase-matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. In this Letter, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index nonlinear metamaterial, along with two other novel phase-matching configurations, utilizing periodic poling to switch between the three phase-matching domains.
Resumo:
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally- derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.
Resumo:
We present iterative algorithms for solving linear inverse problems with discrete data and compare their performances with the method of singular function expansion, in view of applications in optical imaging and particle sizing.
Resumo:
info:eu-repo/semantics/published
Resumo:
In The Eye of Power, Foucault delineated the key concerns surrounding hospital architecture in the latter half of the eighteenth century as being the ‘visibility of bodies, individuals and things'. As such, the ‘new form of hospital' that came to be developed ‘was at once the effect and support of a new type of gaze'. This was a gaze that was not simply concerned with ways of minimising overcrowding or cross-contamination. Rather, this was a surveillance intended to produce knowledge about the pathological bodies contained within the hospital walls. This would then allow for their appropriate classification. Foucault went on to describe how these principles came to be applied to the architecture of prisons. This was exemplified for him in the distinct shape of Bentham's panopticon. This circular design, which has subsequently become an often misused synonym for a contemporary culture of surveillance, was premised on a binary of the seen and the not-seen. An individual observer could stand at the central point of the circle and observe the cells (and their occupants) on the perimeter whilst themselves remaining unseen. The panopticon in its purest form was never constructed, yet it conveys the significance of the production of knowledge through observation that became central to institutional design at this time and modern thought more broadly. What is curious though is that whilst the aim of those late eighteenth century buildings was to produce wellventilated spaces suffused with light, this provoked an interest in its opposite. The gothic movement in literature that was developing in parallel conversely took a ‘fantasy world of stone walls, darkness, hideouts and dungeons…' as its landscape (Vidler, 1992: 162). Curiously, despite these modern developments in prison design, the façade took on these characteristics. The gothic imagination came to describe that unseen world that lay behind the outer wall. This is what Evans refers to as an architectural ‘hoax'. The façade was taken to represent the world within the prison walls and it was the façade that came to inform the popular imagination about what occurred behind it. The rational, modern principles ordering the prison became conflated with the meanings projected by and onto the façade. This confusion of meanings have then been repeated and reenforced in the subsequent representations of the prison. This is of paramount importance since it is the cinematic and televisual representation of the prison, as I argue here and elsewhere, that maintain this erroneous set of meanings, this ‘hoax'.
Resumo:
Empirical data on the life experiences of contemporary school-age lesbian, gay and bisexual (LGB) young people in Britain remains somewhat sparse. This paper reports the preliminary findings of a study conducted at a recently-initiated LGB youth Summer School. To further an appreciation of issues of concern to today's LGB teenagers, in-depth interviews were conducted with 10 Summer School participants (five female and five male, aged 15-18 years). The aim was to elicit their views and experiences relating to their need for support such as that offered by the Summer School. Themes drawn from participants' interviews are presented. Key issues included: being positioned as different by their majority heterosexual peers; feelings of isolation and loneliness in their peer groups and families; difficulties in finding others like themselves for companionship; and the importance of meeting more LGB people of their own age.
Resumo:
This paper describes a study of digital literacy where the researcher worked with one group of English language arts teacher candidates and one of adolescents, reading and writing hypertext fiction. The findings suggest that the adolescent readers/writers brought a more flexible and multiliterate approach to their digital literacy processes than the teacher candidates.