991 resultados para HYDROXY COMPOUNDS
Resumo:
Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.
The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.
Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.
Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.
Resumo:
The purpose of this work is a contribution to the quantitative record of the use of iron by planktonic algae. Preliminary experiments with Chlorella to determine the rate of iron intake in the presence of inorganic sources of iron did not produce the desired result. The crucial point of this work is the investigation of the influence of various external factors on the stability of FeEDTA (FeEDTA = Ferric(III)-compound of ethylene-diamine tetra-acetic acid), since this compound appears to be particularly well-suited as a source of iron for planktonic algae (e.g. TAMIYA et al. 1953). Cultures of Chlorella fusca in a light thermostat were used in experimental research. Methods and results are discussed.
Resumo:
The effectiveness of 17 α-hydroxy-20 β-dihydroprogesterone (17 α-20 β Pg) or of a trout hypophyseal gonadotrophic extract on the in vitro intrafollicular maturation of trout oocytes can be modulated by steroids which do not have a direct maturing effect; the effectiveness of the gonadotrophic extract is lowered by oestradiol and oestrone and increased by testosterone. As these steroids have no significant effect on maturation induced by 17 α-20 β Pg, the site of their activity is probably in the follicular envelopes. Corticosteroids, and Cortisol and cortisone in particular increase the effectiveness of the gonadotrophic extract, but increase the effectiveness of 17 α-20 β Pg even more strongly, suggesting that this 'progestagen' has a direct effect on oocyte sensitivity.
Resumo:
I. CONFIGURATIONAL STABILITY AND REDISTRIBUTION EQUILIBRIA IN ORGANOMAGNESIUM COMPOUNDS
The dependence of the rate of inversion of a dialkylmagnesium compound on the solvent has been studied.
Examination of the temperature dependence of the nuclear magnetic resonance spectrum of 1-phenyl-2-propylmagnesium bromide in diethyl ether solution indicates that inversion of configuration at the methylene group of this Grignard reagent occurs with an approximate rate of 2 sec-1 at room temperature. This is the first example of a rapid inversion rate in a secondary Grignard reagent.
The rates of exchange of alkyl groups between dineopentylmagnesium and di-s-butylmagnesium, bis-(2-methylbutyl)-magnesium and bis-(4, 4-dimethyl-2-pentyl)-magnesium respectively in diethyl ether solution were found to be fast on the nmr time scale. However, the alkyl group exchange rate was found to be slow in a diethyl ether solution of dineopentylmagnesium and bis-(2-methylbutyl)-magnesium containing N, N, N', N'-tetramethylethylenediamine. The unsymmetrical species neopentyl-2-methylbutyl-magnesium was observed at room temperature in the nmr spectrum of the solution containing the diamine.
II. REDISTRIBUTION EQUILIBRIA IN ORGANOCADMIUM COMPOUNDS
The exchange of methyl groups in dimethylcadmium has been studied by nuclear magnetic resonance spectroscopy. Activation parameters for the methyl group exchange have been measured for a neat sample and for a solution in tetrahydrofuran. The exchange is faster in the basic solvent tetrahydrofuran relative to the neat sample and in tetrahydrofuran solution is retarded by the solvating agent N, N, N’, N’-tetramethylethylenediamine and greatly increased by cadmium bromide. The addition of methanol to a solution of dimethylcadmium in tetrahydrofuran appears to have very little effect on the rate of exchange. The exchange was found to proceed with retention of configuration. The rate-limiting step for the exchange of methyl groups in a basic solvent appears to be the dissociation of coordinating solvent from dimethylcadmium.
The equilibrium between methylcadmium bromide, dimethylcadmium and cadmium bromide in tetrahydrofuran solution has also been studied. At room temperature the interconversion of the species is very fast on the nmr time scale but at -100° distinct absorptions for methylcadmium bromide and imethylcadmium are observed.
The species ethylmethylcadmium has been observed in the nmr spectrum.
The rate of exchange of vinyl groups in a solution of divinylcadmium in tetrahydrofuran has been found to be fast on the nmr time scale.
Resumo:
In a multi-target complex network, the links (L-ij) represent the interactions between the drug (d(i)) and the target (t(j)), characterized by different experimental measures (K-i, K-m, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (c(j)). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%-90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.
Resumo:
Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.
Resumo:
208 p.
Resumo:
Organic light-emitting diodes (OLEDs) using tris-(8-hydroxy-quinolinato) aluminum (Alq(3)) as an emitter, 8-hydroxy-quinolinato lithium (Liq) as an electron injection layer, were prepared. Experimental results show that the efficiency of device with Liq is three times higher than that without Liq. The device using Liq as an injection layer is less sensitive in efficiency to the Liq thickness than that using LiF. In addition to the Alq3 based devices, Liq is also very effective as an electron injection layer for 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl based blue OLED and poly (2-methoxy,5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) based orange polymer OLED. (c) 2004 Elsevier B.V. All rights reserved.