914 resultados para HB-PCF
Resumo:
The use of hydroxyurea (HU) can improve the clinical course of sickle cell disease. However, several features of HU treatment remain unclear, including the predictability of drug response and determination of adequate doses, considering positive responses and minimal side effects. In order to identify adequate doses of HU for treatment of sickle cell disease, 10 patients, 8 with sickle cell anemia and 2 with Sß thalassemia (8SS, 2Sß), were studied for a period of 6 to 19 months in an open label dose escalation trial (10 to 20 mg kg-1 day-1). Hemoglobin (Hb), fetal hemoglobin (Hb F) and mean corpuscular volume (MCV) values and reticulocyte, neutrophil and platelet counts were performed every two weeks during the increase of the HU dose and every 4 weeks when the maximum HU dose was established. Reduction in the number of vasoocclusive episodes was also considered in order to evaluate the efficiency of the treatment. The final Hb and Hb F concentrations, and MCV values were significantly higher than the initial values, while the final reticulocyte and neutrophil counts were significantly lower. There was an improvement in the concentration of Hb (range: 0.7-2.0 g/dl) at 15 mg HU kg-1 day-1, but this concentration did not increase significantly when the HU dose was raised to 20 mg kg-1 day-1. The concentration of Hb F increased significantly (range: 1.0-18.1%) when 15 mg HU was used, and continued to increase when the dose was raised to 20 mg kg-1 day-1. The final MCV values increased 11-28 fl (femtoliters). However, reticulocyte (range: 51-205 x 109/l) and neutrophil counts (range: 9.5-1.3 x 109/l) obtained at this dose were significantly lower than those obtained with 15 mg kg-1 day-1. All patients reported a decrease in frequency or severity of vasoocclusive episodes. These results suggest that a hydroxyurea dose of 15 mg kg-1 day-1 seems to be adequate for treatment of sickle cell disease in view of the minimal side effects observed and the improvement in laboratory and clinical parameters.
Resumo:
Patients with sickle cell anemia (Hb SS) or sickle cell trait (Hb AS) may present several types of renal dysfunction; however, comparison of the prevalence of these abnormalities between these two groups and correlation with the duration of disease in a large number of patients have not been thoroughly investigated. In a cross-sectional study using immunoenzymometric assays to measure tubular proteinuria, microalbuminuria, measurement of creatinine clearance, urinary osmolality and analysis of urine sediment, we evaluated glomerular and tubular renal function in 106 adults and children with Hb SS (N = 66) or Hb AS (N = 40) with no renal failure (glomerular filtration rate (GFR) >85 ml/min). The percentage of individuals with microalbuminuria was higher among Hb SS than among Hb AS patients (30 vs 8%, P<0.0001). The prevalence of microhematuria was similar in both groups (26 vs 30%, respectively). Increased urinary levels of retinol-binding protein or ß2-microglobulin were detected in only 3 Hb SS and 2 Hb AS patients. Urinary osmolality was reduced in patients with Hb SS or with Hb AS; however, it was particularly evident in Hb SS patients older than 15 years (median = 393 mOsm/kg, range = 366-469) compared with Hb AS patients (median = 541 mOsm/kg, range = 406-722). Thus, in addition to the frequently reported early reduction of urinary osmolality and increased GFR, nondysmorphic hematuria was found in 26 and 30% of patients with Hb SS or Hb AS, respectively. Microalbuminuria is an important marker of glomerular injury in patients with Hb SS and may also be demonstrated in some Hb AS individuals. Significant proximal tubular dysfunction is not a common feature in Hb SS and Hb AS population at this stage of the disease (i.e., GFR >85 ml/min).
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1). The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work.
Resumo:
Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells). The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats) in the absence of bleeding. The development of anemia was correlated (r2 = 0.86) with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01) on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC), the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability) and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.
Resumo:
Seven unrelated patients with hemoglobin (Hb) H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha)20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha) was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha)20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aa)T]. Among the 27 patients with structural alterations, 15 (of Italian descent) had Hb Hasharon (alpha47Asp->His) associated with the -alpha3.7 deletion, 4 (of Italian descent) were heterozygous for Hb J-Rovigo (alpha53Ala->Asp), 4 (3 Blacks and 1 Caucasian) were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys) associated with the alpha+-thalassemia, 1 (Black) was heterozygous for Hb G-Pest (alpha74Asp->Asn), 1 (Caucasian) was heterozygous for Hb Kurosaki (alpha7Lys->Glu), 1 (Caucasian) was heterozygous for Hb Westmead (alpha122His->Gln), and 1 (Caucasian) was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val). Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.
Resumo:
In order to determine the contribution of alpha-thalassemia to microcytosis and hypochromia, 339 adult outpatients seen at Unicamp University Hospital (with the exception of the Clinical Hematology outpatient clinics), who showed normal hemoglobin (Hb) levels and reduced mean corpuscular volume and mean corpuscular hemoglobin, were analyzed. Ninety-eight were Blacks (28.9%) and 241 were Caucasians (71.1%). In all cases, Hb A2 and F levels were either normal or low. The most common deletional and nondeletional forms of alpha-thalassemia [-alpha3.7, -alpha4.2, --MED, -(alpha)20.5, alphaHphIalpha, alphaNcoIalpha, aaNcoI and alphaTSAUDI] were investigated by PCR and restriction enzyme analyses. A total of 169 individuals (49.9%) presented alpha-thalassemia: 145 (42.8%) were heterozygous for the -alpha3.7 deletion (-alpha3.7/aa) and 18 (5.3%) homozygous (-alpha3.7/-alpha3.7), 5 (1.5%) were heterozygous for the nondeletional form alphaHphIalpha (alphaHphIalpha/aa), and 1 (0.3%) was a --MED carrier (--MED/aa). Among the Blacks, 56 (57.1%) showed the -alpha3.7/aa genotype, whereas 12 (12.2%) were -alpha3.7/-alpha3.7 and 1 (1.0%) was an alphaHphIalpha carrier; among the Caucasians, 89 (36.9%) were -alpha3.7/aa, 6 (2.5%) had the -alpha3.7/-alpha3.7 genotype, 4 (1.7%) presented the nondeletional form (alphaHphIalpha/aa), and 1 (0.4%) was a --MED carrier. These results demonstrate that alpha-thalassemia, mainly through the -alpha3.7 deletion, is an important cause of microcytosis and hypochromia in individuals without anemia. These data are of clinical relevance since these hematological alterations are often interpreted as indicators of iron deficiency.
Resumo:
We describe the clinical and molecular characteristics of two unrelated Brazilian families with an association of the Sicilian form of (dß)º-thalassemia with hemoglobin S and ß-thalassemia. Direct sequencing of the ß-globin gene showed only the hemoglobin S mutation in patient 1 and the ß-thalassemia IVS1-110 in patient 2. The other allele was deleted in both patients and PCR of DNA samples of the breakpoint region of both patients showed a band of approximately 1,150 bp, expected to be observed in the DNA of carriers of Sicilian (dß)º-thalassemia. The nucleotide sequence of this fragment confirmed the Sicilian deletion. There are few reports concerning the Hb S/(dß)º-thalassemia association and patient 2 is the first reported case of Sicilian type of (dß)º-thalassemia in association with ß-thalassemia documented at the molecular level.
Resumo:
The aim of the present study was to assess the influence of hyperbaric oxygenation (HBO) on rat liver regeneration before and after partial hepatectomy. Rats were sacrificed 54 h after 15% hepatectomy, liver and body weights were measured, and serum alanine transaminase (ALT) and aspartate transaminase (AST) activity and albumin levels were determined. The lipid peroxide level, as indicated by malondialdehyde production in the remnant liver was measured, and liver sections were analyzed by light microscopy. Five groups of 10 rats in each group were studied. The preHBO and pre-hyperbaric pressure (preHB) groups were treated before partial hepatectomy with 100% O2 and 21% O2, respectively, at 202,650 pascals, daily for 3 days (45 min/day). The control group was not treated before partial hepatectomy and recovered under normal ambient conditions after the procedure. Groups postHBO and postHB were treated after partial hepatectomy with HBO and HB, respectively, three times (45 min/day). The preHBO group presented a significant increase in the initiation of the regeneration process of the liver 54 h postoperatively. The liver/body weight ratio was 0.0618 ± 0.0084 in the preHBO compared to 0.0517 ± 0016 g/g in the control animals (P = 0.016). In addition, the preHBO group showed significant better liver function (evaluated by the lowest serum ALT and AST activities, P = 0.002 and P = 0.008, respectively) and showed a significant decrease in serum albumin levels compared to control (P < 0.001). Liver lipid peroxide concentration was lowest in the preHBO group (P < 0.001 vs control and postHBO group) and light microscopy revealed that the composition of liver lobules in the preHBO group was the closest to normal histological features. These results suggest that HBO pretreatment was beneficial for rat liver regeneration after partial hepatectomy.
Resumo:
Blood transfusion in patients with sickle cell disease (SCD) is limited by the development of alloantibodies to erythrocytes. In the present study, the frequency and risk factors for alloimmunization were determined. Transfusion records and medical charts of 828 SCD patients who had been transfused and followed at the Belo Horizonte Blood Center, Belo Horizonte, MG, Brazil, were retrospectively reviewed. Alloimmunization frequency was 9.9% (95% CI: 7.9 to 11.9%) and 125 alloantibodies were detected, 79% of which belonged to the Rhesus and Kell systems. Female patients developed alloimmunization more frequently (P = 0.03). The median age of the alloimmunized group was 23.3 years, compared to 14.6 years for the non-alloimmunized group (P < 0.0001). Multivariate analyses were applied to the data for 608 hemoglobin (Hb) SS or SC patients whose number of transfusions was recorded accurately. Number of transfusions (P = 0.00006), older age (P = 0.056) and Hb SC (P = 0.02) showed independent statistical associations with alloimmunization. Hb SC patients older than 14 years faced a 2.8-fold higher (95% CI: 1.3 to 6.0) risk of alloimmunization than Hb SS patients. Female Hb SC patients had the highest risk of developing alloantibodies. In patients younger than 14 years, only the number of transfusions was significant. We conclude that an increased risk of alloimmunization was associated with older patients with Hb SC, specially females, even after adjustments were made for the number of transfusions received, the most significant variable.
Resumo:
In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 µM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.
Resumo:
Lithium has been used for the last five decades to treat bipolar disorder, but the molecular basis of its therapeutic effect is unknown. Phosphoglucomutase is a key enzyme in the metabolism of glycogen. In yeast, rabbit and human HEK293 cells, it is inhibited by lithium in the therapeutic concentration range. We measured the phosphoglucomutase activity in erythrocytes and the inhibitor constant for lithium in a population of healthy subjects and compared them to those of bipolar patients treated with lithium or carbamazepine. The specific activity of phosphoglucomutase measured in vitro in erythrocytes from control subjects presented a normal distribution, with the difference between the lowest and the highest activity being approximately 2-fold (0.53-1.10 nmol mg Hb-1 min-1). Comparison of phosphoglucomutase activity in untreated bipolar patients and control subjects showed no significant difference, whereas comparison between bipolar patients treated with carbamazepine or lithium revealed significantly lower mean values in patients treated with carbamazepine (747.3 ± 27.6 vs 879.5 ± 35.9 pmol mg Hb-1 min-1, respectively). When we studied the concentration of lithium needed to inhibit phosphoglucomutase activity by 50%, a bimodal distribution among the population tested was obtained. The concentration of LiCl needed to inhibit phosphoglucomutase activity by 50% was 0.35 to 1.8 mM in one group of subjects and in the other it was 3 to 4 mM. These results suggest that phosphoglucomutase activity may be significant in patients with bipolar disorder treated with lithium and carbamazepine.
Resumo:
The role of chloride in the stabilization of the deoxy conformation of hemoglobin (Hb), the low oxygen affinity state, has been studied in order to identify the nature of this binding. Previous studies have shown that arginines 141α could be involved in the binding of this ion to the protein. Thus, des-Arg Hb, human hemoglobin modified by removal of the α-chain C-terminal residue Arg141α, is a possible model for studies of these interactions. The loss of Arg141α and all the salt bridges in which it participates is associated with subtle structural perturbations of the α-chains, which include an increase in the conformational flexibility and further shift to the oxy state, increasing oxygen affinity. Thus, this Hb has been the target of many studies of structural and functional behavior along with medical applications. In the present study, we describe the biochemical characterization of des-Arg Hb by electrophoresis, high-performance liquid chromatography and mass spectroscopy. The effects of chloride binding on the oxygen affinity and on the cooperativity to des-Arg Hb and to native human hemoglobin, HbA, were measured and compared. We confirm that des-Arg Hb presents high oxygen affinity and low cooperativity in the presence of bound chloride and show that the binding of chloride to des-Arg does not change its functional characteristics as observed with HbA. These results indicate that Arg141α may be involved in the chloride effect on Hb oxygenation. Moreover, they show that these residues contribute to lower Hb oxygen affinity to a level compatible with its biological function.
Resumo:
Alpha-thalassemia is the most common inherited disorder of hemoglobin synthesis. Genomic deletions involving the alpha-globin gene cluster on chromosome 16p13.3 are the most frequent molecular causes of the disease. Although common deletions can be detected by a single multiplex gap-PCR, the rare and novel deletions depend on more laborious techniques for their identification. The multiplex ligation-dependent probe amplification (MLPA) technique has recently been used for this purpose and was successfully used in the present study to detect the molecular alterations responsible for the alpha-thalassemic phenotypes in 8 unrelated individuals (3 males and 5 females; age, 4 months to 30 years) in whom the molecular basis of the disease could not be determined by conventional methods. A total of 44 probe pairs were used for MLPA, covering approximately 800 kb from the telomere to the MSLN gene in the 16p13.3 region. Eight deletions were detected. Four of these varied in size from 240 to 720 kb and affected a large region including the entire alpha-globin gene cluster and its upstream regulatory element (alpha-MRE), while the other four varied in size from 0.4 to 100 kb and were limited to a region containing this element. This study is the first in Brazil to use the MLPA method to determine the molecular basis of alpha-thalassemia. The variety of rearrangements identified highlights the need to investigate all cases presenting microcytosis and hypochromia, but without iron deficiency or elevated hemoglobin A2 levels and suggests that these rearrangements may be more frequent in our population than previously estimated.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.