941 resultados para H3K4 methylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and lethal of all gliomas. The current standard of care includes surgery followed by concomitant radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). O⁶-methylguanine-DNA methyltransferase (MGMT) repairs the most cytotoxic of lesions generated by TMZ, O⁶-methylguanine. Methylation of the MGMT promoter in GBM correlates with increased therapeutic sensitivity to alkylating agent therapy. However, several aspects of TMZ sensitivity are not explained by MGMT promoter methylation. Here, we investigated our hypothesis that the base excision repair enzyme alkylpurine-DNA-N-glycosylase (APNG), which repairs the cytotoxic lesions N³-methyladenine and N⁷-methylguanine, may contribute to TMZ resistance. Silencing of APNG in established and primary TMZ-resistant GBM cell lines endogenously expressing MGMT and APNG attenuated repair of TMZ-induced DNA damage and enhanced apoptosis. Reintroducing expression of APNG in TMZ-sensitive GBM lines conferred resistance to TMZ in vitro and in orthotopic xenograft mouse models. In addition, resistance was enhanced with coexpression of MGMT. Evaluation of APNG protein levels in several clinical datasets demonstrated that in patients, high nuclear APNG expression correlated with poorer overall survival compared with patients lacking APNG expression. Loss of APNG expression in a subset of patients was also associated with increased APNG promoter methylation. Collectively, our data demonstrate that APNG contributes to TMZ resistance in GBM and may be useful in the diagnosis and treatment of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4).Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nrf2 transcription factor controls the expression of genes involved in the antioxidant defense system. Here, we identified Nrf2 as a novel regulator of desmosomes in the epidermis through the regulation of microRNAs. On Nrf2 activation, expression of miR-29a and miR-29b increases in cultured human keratinocytes and in mouse epidermis. Chromatin immunoprecipitation identified the Mir29ab1 and Mir29b2c genes as direct Nrf2 targets in keratinocytes. While binding of Nrf2 to the Mir29ab1 gene activates expression of miR-29a and -b, the Mir29b2c gene is silenced by DNA methylation. We identified desmocollin-2 (Dsc2) as a major target of Nrf2-induced miR-29s. This is functionally important, since Nrf2 activation in keratinocytes of transgenic mice causes structural alterations of epidermal desmosomes. Furthermore, the overexpression of miR-29a/b or knockdown of Dsc2 impairs the formation of hyper-adhesive desmosomes in keratinocytes, whereas Dsc2 overexpression has the opposite effect. These results demonstrate that a novel Nrf2-miR-29-Dsc2 axis controls desmosome function and cutaneous homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Silver-Russell syndrome (SRS) is a genetically and clinically heterogeneous disease. Although no protein coding gene defects have been reported in SRS patients, approximately 50% of SRS patients carry epimutations (hypomethylation) at the IGF2/H19 imprinting control region 1 (ICR1). Proper methylation at ICR1 is crucial for the imprinted expression of IGF2, a fetal growth factor. CTCFL, a testis-specific protein, has recently been proposed to play a role in the establishment of DNA methylation at the murine equivalent of ICR1. A screen was undertaken to assess whether CTCFL is mutated in SRS patients with hypomethylation, to explore a link between the observed epimutations and a genetic cause of the disease. METHODOLOGY/PRINCIPAL FINDINGS: DNA was obtained from 36 SRS patients with hypomethylation at ICR1. All CTCFL coding exons were sequenced and analyzed for duplications/deletions using both multiplex ligation-dependent probe amplification, with a custom CTCFL probe set, and genomic qPCR. Novel SNP alleles were analyzed for potential differential splicing in vitro utilizing a splicing assay. Neither mutations of CTCFL nor duplications/deletions were observed. Five novel SNPs were identified and have been submitted to dbSNP. In silico splice prediction suggested one novel SNP, IVS2-66A>C, activated a cryptic splice site, resulting in aberrant splicing and premature termination. In vitro splicing assays did not confirm predicted aberrant splicing. CONCLUSIONS/SIGNIFICANCE: As no mutations were detected at CTCFL in the patients examined, we conclude that genetic alterations of CTCFL are not responsible for the SRS hypomethylation. We suggest that analysis of other genes involved in the establishment of DNA methylation at imprinted genes, such as DNMT3A and DNMT3L, may provide insight into the genetic cause of hypomethylation in SRS patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade a series of trials of the EORTC Brain Tumor Group (BTG) has substantially influenced and shaped the standard-of-care of primary brain tumors. All these trials were coupled with biological research that has allowed for better understanding of the biology of these tumors. In glioblastoma, EORTC trial 26981/22981 conducted jointly with the National Cancer Institute of Canada Clinical Trials Group showed superiority of concomitant radiochemotherapy with temozolomide over radiotherapy alone. It also identified the first predictive marker for benefit from alkylating agent chemotherapy in glioblastoma, the methylation of the O6-methyl-guanyl-methly-transferase (MGMT) gene promoter. In another large randomized trial, EORTC 26951, adjuvant chemotherapy in anaplastic oligodendroglial tumors was investigated. Despite an improvement in progression-free survival this did not translate into a survival benefit. The third example of a landmark trial is the EORTC 22845 trial. This trial led by the EORTC Radiation Oncology Group forms the basis for an expectative approach to patients with low-grade glioma, as early radiotherapy indeed prolongs time to tumor progression but with no benefit in overall survival. This trial is the key reference in deciding at what time in their disease adult patients with low-grade glioma should be irradiated. Future initiatives will continue to focus on the conduct of controlled trials, rational academic drug development as well as systematic evaluation of tumor tissue including biomarker development for personalized therapy. Important lessons learned in neurooncology are to dare to ask real questions rather than merely rapidly testing new compounds, and the value of well designed trials, including the presence of controls, central pathology review, strict radiology protocols and biobanking. Structurally, the EORTC BTG has evolved into a multidisciplinary group with strong transatlantic alliances. It has contributed to the maturation of neurooncology within the oncological sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Medulloblastomas (MB) are the most common malignant brain tumors in childhood. Alkylator-based drugs are effective agents in the treatment of patients with MB. In several tumors, including malignant glioma, elevated O(6)-methylguanine-DNA methyltransferase (MGMT) expression levels or lack of MGMT promoter methylation have been found to be associated with resistance to alkylating chemotherapeutic agents such as temozolomide (TMZ). In this study, we examined the MGMT status of MB and central nervous system primitive neuroectodermal tumor (PNET) cells and two large sets of primary MB. In seven MB/PNET cell lines investigated, MGMT promoter methylation was detected only in D425 human MB cells as assayed by the qualitative methylation-specific PCR and the more quantitative pyrosequencing assay. In D425 human MB cells, MGMT mRNA and protein expression was clearly lower when compared with the MGMT expression in the other MB/PNET cell lines. In MB/PNET cells, sensitivity towards TMZ and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) correlated with MGMT methylation and MGMT mRNA expression. Pyrosequencing in 67 primary MB samples revealed a mean percentage of MGMT methylation of 3.7-92% (mean: 13.25%, median: 10.67%). Percentage of MGMT methylation and MGMT mRNA expression as determined by quantitative RT-PCR correlated inversely (n = 46; Pearson correlation r (2) = 0.14, P = 0.01). We then analyzed MGMT mRNA expression in a second set of 47 formalin-fixed paraffin-embedded primary MB samples from clinically well-documented patients treated within the prospective randomized multicenter trial HIT'91. No association was found between MGMT mRNA expression and progression-free or overall survival. Therefore, it is not currently recommended to use MGMT mRNA expression analysis to determine who should receive alkylating agents and who should not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological subtyping and grading by malignancy are the cornerstones of the World Health Organization (WHO) classification of tumors of the central nervous system. They shall provide clinicians with guidance as to the course of disease to be expected and the choices of treatment to be made. Nonetheless, patients with histologically identical tumors may have very different outcomes, notably in patients with astrocytic and oligodendroglial gliomas of WHO grades II and III. In gliomas of adulthood, 3 molecular markers have undergone extensive studies in recent years: 1p/19q chromosomal codeletion, O(6)-methylguanine methyltransferase (MGMT) promoter methylation, and mutations of isocitrate dehydrogenase (IDH) 1 and 2. However, the assessment of these molecular markers has so far not been implemented in clinical routine because of the lack of therapeutic implications. In fact, these markers were considered to be prognostic irrespective of whether patients were receiving radiotherapy (RT), chemotherapy, or both (1p/19q, IDH1/2), or of limited value because testing is too complex and no chemotherapy alternative to temozolomide was available (MGMT). In 2012, this situation has changed: long-term follow-up of the Radiation Therapy Oncology Group 9402 and European Organisation for Research and Treatment of Cancer 26951 trials demonstrated an overall survival benefit from the addition to RT of chemotherapy with procarbazine/CCNU/vincristine confined to patients with anaplastic oligodendroglial tumors with (vs without) 1p/19q codeletion. Furthermore, in elderly glioblastoma patients, the NOA-08 and the Nordic trial of RT alone versus temozolomide alone demonstrated a profound impact of MGMT promoter methylation on outcome by therapy and thus established MGMT as a predictive biomarker in this patient population. These recent results call for the routine implementation of 1p/19q and MGMT testing at least in subpopulations of malignant glioma patients and represent an encouraging step toward the development of personalized therapeutic approaches in neuro-oncology.