987 resultados para Gums and resins
Resumo:
Purpose: The aim of this study was to evaluate the effectiveness of disinfectant solutions (1% sodium hypochlorite, 2% chlorhexidine digluconate, 2% glutaraldehyde, 100% vinegar, tabs of sodium perborate-based denture cleanser, and 3.8% sodium perborate) in the disinfection of acrylic resin specimens (n = 10/group) contaminated in vitro by Candida albicans, Streptococcus mutans, S. aureus, Escherichia coli, or Bacillus subtilis as measured by residual colony-forming unit (CFU). In a separate experiment, acrylic resin was treated with disinfectants to monitor potential effects on surface roughness, Ra (μm), which might facilitate microbial adherence. Materials and Methods: Three hundred fifty acrylic resin specimens contaminated in vitro with 1×10 6 cells/ml suspensions of standard strains of the cited microorganisms were immersed in the disinfectants for 10 minutes; the control group was not submitted to any disinfection process. Final counts of microorganisms per ml were performed by plating method for the evaluation of microbial level reduction. Results were compared statistically by ANOVA and Tukey's test (p ≤ 0.05). In a parallel study aiming to evaluate the effect of the tested disinfectant on resin surface, 60 specimens were analyzed in a digital rugosimeter before and after ten cycles of 10-minute immersion in the disinfectants. Measurements of superficial roughness, Ra (μm), were compared statistically by paired t-test (p ≤ 0.05). Results: The results showed that 1% sodium hypochlorite, 2% glutaraldehyde, and 2% chlorhexidine digluconate were most effective against the analyzed microorganisms, followed by 100% vinegar, 3.8% sodium perborate, and tabs of sodium perborate-based denture cleanser. Superficial roughness of the specimens was higher after disinfection cycles with 3.8% sodium perborate (p = 0.03) and lower after the cycles with 2% chlorhexidine digluconate (p = 0.04). Conclusion: Within the limits of this experiment, it could be concluded that 1% sodium hypochlorite, 2% glutaraldehyde, 2% chlorexidine, 100% vinegar, and 3.8% sodium perborate are valid alternatives for the disinfection of acrylic resin. © 2008 by The American College of Prosthodontists.
Resumo:
The aim of this study was to evaluate the dimensional changes of denture bases made from different resins after different storage periods. For this purpose, 25 sets of plaster models/resin bases were prepared using 4 acrylic resins submitted to two types of polymerization: 1- QC-20 submitted to polymerization by microwave energy; 2- QC-20 submitted to polymerization by water hot bath; 3- Vipi Cril submitted to polymerization by water hot bath; 4- Vipi Wave submitted to polymerization by microwave energy; and 5- Onda Cryl submitted to polymerization by microwave energy. After polymerization, the specimens were sectioned for accuracy readings using a comparison microscope. Readings were taken at 3 points: the crests of the right (A) and left (B) ridges, and the median region of the palate, in 4 different periods. The data obtained were submitted to two-way ANOVA and Tukey's test at 5% significance level. The greatest distortions were found in the posterior palatal region of the base (M), with statistically significant difference (p<0.05) for the studied resins. All acrylic resins presented dimensional changes and the storage period influenced these alterations.
Resumo:
The aim of this study was to evaluate the effect of radiotherapy on the radiopacity and flexural strength of composite resin. Forty Z250 composite resin specimens were polymerized using a halogen light-curing unit and divided into 5 groups, in accordance with the radiotherapy dose: G1- without irradiation, G2- 30 Gy, G3- 40 Gy, G4- 50 Gy and GS- 60 Gy Digital images were obtained using a GE 100 X-ray. Radiopacity values were obtained with the Digora digital imaging system and the flexural strength was evaluated with an EMIC universal testing machine. Data were submitted to ANOVA and Tukey 's test. G1 presented the highest radiopacity value, followed by G3, G5, G4 and G2. For flexural strength, G1 presented the lowest value, followed by G2, G5, G3 and G4. Differences were no significant (p>0.05). The commonly used dosage of radiotherapy treatment, did not cause alteration in the radiopacity and flexural strength of resin-based composites.
Resumo:
The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU. © 2009 Pleiades Publishing, Ltd.
Resumo:
The purpose of this study was to evaluate the transmittance of seven different composite resins. Ten specimens were prepared (10 mm diameter, 2 mm thickness) for each experimental group, as follows: G1- Charisma® A 2 (Heraeus-Kulzer); G2- Filtek™ Supreme A 2E (3M/ESPE); G3- Filtek™ Supreme A2B (3M/ESPE); G4-Filtek™ Supreme YT (3M/ESPE); G5- Esthet-X® A2 (Dentsply); G6- Esthet-X® YE (Dentsply); G7- Durafill® A 2 (Heraeus-Kulzer) and G8- Filtek™ Z-100 A2 (3M/ESPE). The transmittance mode was measured using a UV-visible spectrophotometer (Cary Instruments) at 400-760 nm. The specimens were evaluated at three different times: zero hour (initial), 24 hours and 10 days after immersion in artificial saliva. The differences in transmittance were determined by two-way analysis of variance (ANOVA) and Tukey's test. The various composite resins showed significant differences in the wavelength dependence of transmittance. The mean values of transmittance increased significantly, with wavelengths increasing from 400 to 760 nm. The performance of the experimental groups was similar in terms of immersion time, considering that at time zero and after 10 days, all the groups showed similar results, which were statistically higher than the values obtained after 24 hours of immersion. The Filtek™ Supreme YT composite resin presented the highest mean transmittance values along the wavelengths at the three measured times. Esthet-X® YE and Durafill® yielded similar mean transmittance values, which were higher than those of the other groups. This study shows that the transmittance values of composite resins are directly related with the type, size and amount of inorganic filler particles.
Resumo:
This study aimed to compare in vitro the shear bond strength between metallic brackets (Abzil) with conventional mesh bases and metallic brackets with bases industrially sandblasted with aluminum oxide using three adhesive systems, in order to assess the influence of sandblasting on adhesiveness and to compare 3 different bonding systems. Two hundred and forty bovine incisors were used and randomly divided into 6 groups (40 teeth in each group), according to the bracket base and to the bonding system. The brackets were direct-bonded in bovine teeth with 3 adhesive systems: System A - conventional Transbond™ XT (3M -Unitek); System B - Transbond™ Plus Self Etching Primer + Transbond™ XT (3M - Unitek) and System C - Fuji ORTHO LC resin-reinforced glass ionomer cement in capsules (GC Corp.). Shear bond strength tests were performed 24 hours after bonding, in a DL-3000 universal testing machine (EMIC), using a load cell of 200 kgf and a speed of 1 mm/min. The results were submitted to statistical analysis and showed no significant difference between conventional and sandblasted bracket bases. However, comparison between the bonding systems presented significantly different results. System A (14.92 MPa) and system C (13.24 MPa) presented statistically greater shear bond strength when compared to system B (10.66 MPa). There was no statistically significant difference between system A and system C.
Resumo:
The objective of this study was to measure the thickness of the hybrid layer (HLT), length of resin tags (RTL) and bond strength (BS) in the same teeth, using a self-etching adhesive system Adper Prompt L Pop to intact dentin and to analyze the correlation between HLTand RTL and their BS. Ten human molars were used for the restorative procedures and each restored tooth was sectioned in mesio-distal direction. One section was submitted to light microscopy analysis of HLT and RTL (400x). Another section was prepared and submitted to the microtensile bond test (0.5 mm/min). The fractured surfaces were analyzed using scanning electron microscopy to determine the failure pattern. Correlation between HLT and RTL with the BS data was analyzed by linear regression. The mean values of HLT, RTL and BS were 3.36 microm, 12.97 microm and 14.10 MPa, respectively. No significant relationship between BS and HLT (R2= 0.011, p>0.05) and between BS and RTL (R2= 0.038) was observed. The results suggested that there was no significant correlation between the HLT and RTL with the BS of the self-etching adhesive to dentin.
Resumo:
This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC) activated solely by chemical reaction (control group) or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram) or composite (Artglass) disc. Light curing was carried out using conventional halogen light (XL2500) for 40 s (QTH); light emitting diodes (Ultrablue Is) for 40 s (LED); and Xenon plasma arc (Apollo 95E) for 3 s (PAC). Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height) was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C), the samples (n = 5) were sectioned for hardness (KHN) measurements, taken in a microhardness tester (50 gF load 15 s). The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05). The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 ± 11.90 MPa) and lowest means (71.07 ± 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter × 2 mm thick) from composite resin-Tetric Ceram® (Ivoclar/Vivadent) at room temperature (25°C) and pre-heated to 37, 54, and 60°C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion. © 2010 Pleiades Publishing, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm X 5 mm) and covered with a Mylar strip. The tip of the lightcuring unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37°C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (α=0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the lightcuring unit and by its light energy density. © Operative Dentistry.
Resumo:
AIM: This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). METHODS: Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. RESULTS: The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). CONCLUSION: QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.