928 resultados para Graphite foil


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face-centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high-temperature chemically ordered face-centered tetragonal (fct) structure. The fee FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh-density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 degrees C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene-like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon-coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite-coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inelastic neutron scattering spectroscopy has been used to observe and characterise hydrogen on the carbon component of a Pt/C catalyst. INS provides the complete vibration spectrum of coronene, regarded as a molecular model of a graphite layer. The vibrational modes are assigned with the aid of ab initio density functional theory calculations and the INS spectra by the a-CLIMAX program. A spectrum for which the H modes of coronene have been computationally suppressed, a carbon-only coronene spectrum, is a better representation of the spectrum of a graphite layer than is coronene itself. Dihydrogen dosing of a Pt/C catalyst caused amplification of the surface modes of carbon, an effect described as H riding on carbon. From the enhancement of the low energy carbon modes (100-600 cm(-1)) it is concluded that spillover hydrogen becomes attached to dangling bonds at the edges of graphitic regions of the carbon support. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen spillover on carbon-supported precious metal catalysts has been investigated with inelastic neutron scattering (INS) spectroscopy. The aim, which was fully realized, was to identify spillover hydrogen on the carbon support. The inelastic neutron scattering spectra of Pt/C, Ru/C, and PtRu/C fuel cell catalysts dosed with hydrogen were determined in two sets of experiments: with the catalyst in the neutron beam and, using an annular cell, with carbon in the beam and catalyst pellets at the edge of the cell excluded from the beam. The vibrational modes observed in the INS spectra were assigned with reference to the INS of a polycyclic aromatic hydrocarbon, coronene, taken as a molecular model of a graphite layer, and with the aid of computational modeling. Two forms of spillover hydrogen were identified: H at edge sites of a graphite layer (formed after ambient dissociative chemisorption of H-2), and a weakly bound layer of mobile H atoms (formed by surface diffusion of H atoms after dissociative chernisorption of H-2 at 500 K). The INS spectra exhibited characteristic riding modes of H on carbon and on Pt or Ru. In these riding modes H atoms move in phase with vibrations of the carbon and metal lattices. The lattice modes are amplified by neutron scattering from the H atoms attached to lattice atoms. Uptake of hydrogen, and spillover, was greater for the Ru containing catalysts than for the Pt/C catalyst. The INS experiments have thus directly demonstrated H spillover to the carbon support of these metal catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of long-term knowledge upon performance in short-term memory tasks was examined for children from 5 to 10 years of age. The emergence of a lexicality effect, in which familiar words were recalled more accurately than unfamiliar words, was found to depend upon the nature of the memory task. Lexicality effects were interpreted as reflecting the use of redintegration, or reconstruction processes, in short-term memory. Redintegration increased with age for tasks requiring spoken item recall and decreased with age when position information but not naming was required. In a second experiment, redintegration was found in a recognition task when some of the foils rhymed with the target. Older children were able to profit from a rhyming foil, whereas younger children were confused by it, suggesting that the older children make use of sublexical phonological information in reconstructing the target. It was proposed that redintegrative processes in their mature form support the reconstruction of detailed phonological knowledge of words.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edge structures of thermally treated graphite have been studied by means of atomically resolved high-resolution TEM. The method for the determination of a monolayer or more than one layer graphene sheets is established. A series of tilting experiments proves that the zigzag and armchair edges are mostly closed between adjacent graphene layers, and the number of dangling bonds is therefore minimized. Surprisingly bilayer graphene often exhibits AA stacking and is very hard to distinguish from a single graphene layer. Open edge structures with carbon dangling bonds can be found only in a local area where the closed (folding) edge is partially broken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of three-dimensional shell-like structures with bilayer graphene walls is described. The structures are produced by the passage of an electric current through graphite in an arc-discharge apparatus. High resolution transmission electron microscopy is used to characterize the carbon, and provides evidence that the structures are three-dimensional rather than flat. A striking feature of the material is that it contains bilayer nanotubes seamlessly joined to larger shell-like regions. The possible growth mechanism of the carbon is discussed, and potential applications considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aetiology of breast cancer is multifactorial. While there are known genetic predispositions to the disease it is probable that environmental factors are also involved. Recent research has demonstrated a regionally specific distribution of aluminium in breast tissue mastectomies while other work has suggested mechanisms whereby breast tissue aluminium might contribute towards the aetiology of breast cancer. We have looked to develop microwave digestion combined with a new form of graphite furnace atomic absorption spectrometry as a precise, accurate and reproducible method for the measurement of aluminium in breast tissue biopsies. We have used this method to test the thesis that there is a regional distribution of aluminium across the breast in women with breast cancer. Microwave digestion of whole breast tissue samples resulted in clear homogenous digests perfectly suitable for the determination of aluminium by graphite furnace atomic absorption spectrometry. The instrument detection limit for the method was 0.48 μg/L. Method blanks were used to estimate background levels of contamination of 14.80 μg/L. The mean concentration of aluminium across all tissues was 0.39 μg Al/g tissue dry wt. There were no statistically significant regionally specific differences in the content of aluminium. We have developed a robust method for the precise and accurate measurement of aluminium in human breast tissue. There are very few such data currently available in the scientific literature and they will add substantially to our understanding of any putative role of aluminium in breast cancer. While we did not observe any statistically significant differences in aluminium content across the breast it has to be emphasised that herein we measured whole breast tissue and not defatted tissue where such a distribution was previously noted. We are very confident that the method developed herein could now be used to provide accurate and reproducible data on the aluminium content in defatted tissue and oil from such tissues and thereby contribute towards our knowledge on aluminium and any role in breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoelectric behaviour of the transition-metal disulphides n-type NiCr2S4 and p-type CuCrS2 is investigated. Materials prepared by high-temperature reaction were consolidated using cold-pressing and sintering, hot-pressing (HP) in graphite dies or spark-plasma sintering (SPS) in tungsten carbide dies. The consolidation conditions have a marked influence on the electrical transport properties. In addition to the effect on sample density, altering the consolidation conditions results in changes to the sample composition, including the formation of impurity phases. Maximum room-temperature power factors are 0.18 mW m-1 K-2 and 0.09 mW m-1 K-2 for NiCr2S4 and CuCrS2, respectively. Thermal conductivities of ca. 1.4 and 1.2 W m-1 K-1 lead to figures of merit of 0.024 and 0.023 for NiCr2S4 and CuCrS2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new form of carbon is described, which consists of hollow, three-dimensional shells bounded by bilayer graphene. The new carbon is produced very simply, by passing a current through graphite rods in a commercial arc-evaporation unit. Characterisation of the carbon using high resolution transmission electron microscopy is described, and the possible formation mechanism discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.