946 resultados para Gram-positive and Gram-negative microorganisms
Resumo:
BACKGROUND While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. Traveling to countries with a high MDRO prevalence increases the risk of acquiring such an organism. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area (so-called transfer patients). Factors predicting colonization could serve as screening criteria to better target those at highest risk. METHODS This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period. Laboratory screening tests focused on Gram-negative MDROs and methicillin-resistant Staphylococcus aureus (MRSA). RESULTS A total of 235 transfer patients were screened and analyzed, of which 43 (18 %) were positive for an MDRO. Most of them yielded Gram-negative bacteria (42; 98 %), with only a single screening revealing MRSA (2 %); three screenings showed a combination of Gram-negative bacteria and MRSA. For the risk factor analysis we focused on the 42 Gram-negative MDROs. Most of them were ESBL-producing Escherichia coli and Klebsiella pneumoniae while only two were carbapenemase producers. In univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p < 0.001), surgical procedure in a hospital abroad (p = 0.007), and - on admission to our hospital - active infection (p = 0.002), antibiotic treatment (p = 0.014) and presence of skin lesions (p = 0.001). Only hospitalization outside of Europe (Odds Ratio, OR 3.2 (95 % CI 1.5- 6.8)) and active infection on admission (OR 2.7 (95 % CI 1.07- 6.6)) remained as independent predictors of Gram-negative MDRO colonization. CONCLUSION Our data suggest that a large proportion of patients (i.e., 82 %) transferred to Switzerland from hospitals in high MDRO prevalence areas are unnecessarily screened for MDRO colonization. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.
Resumo:
The potential impact of periodontal disease, a suspected risk factor for systemic diseases, presents challenges for health promotion and disease prevention strategies. This study examined clinical, microbiological, and immunological factors in a disease model to identify potential biomarkers that may be useful in predicting the onset and severity of both inflammatory and destructive periodontal disease. This project used an historical cohort design based on data obtained from 47 adult, female nonhuman primates followed over a 6-year period for 5 unique projects where the ligature-induced model of periodontitis was utilized. Standardization of protocols for sample collection allowed for comparison over time. Bleeding and pocket depth measures were selected as the dependent variables of relevance to humans based upon the literature and historical observations. Exposure variables included supragingival plaque, attachment level, total bacteria, black-pigmented bacteria, Gram-negative and Gram-positive bacteria, total IgG and IgA in crevicular fluid, specific IgG antibody in both crevicular fluid and serum, and IgG antibody to four select pathogenic microorganisms. Three approaches were used to analyze the data from this study. The first approach tested for differences in the means of the response variables within the group and among longitudinal observations within the group at each time point. The second approach examined the relationship among the clinical, microbiological, and immunological variables using correlation coefficients and stratified analyses. Multivariable models using GEE for repeated measures were produced as a predictive description of the induction and progression of gingivitis and periodontal disease. The multivariable models for bleeding (gingivitis) include supragingival plaque, total bacteria and total IgG while the second also contains supragingival plaque, Gram-positive bacteria, and total IgG. Two multivariable models emerged for periodontal disease. One multivariable model contains plaque, total bacteria, total IgG and attachment level. The second model includes black-pigmented bacteria, total bacteria, antibody to Campylobacter rectus, and attachment level. Utilization of the nonhuman primate model to prospectively examine causal hypotheses can provide a focus for human research on the mechanisms of progression from health to gingivitis to periodontitis. Ultimately, causal theories can guide strategies to prevent disease initiation and reduce disease severity. ^
Resumo:
Antimicrobial peptides and proteins (AMPs) are widespread in the living kingdom. They are key effectors of defense reactions and mediators of competitions between organisms. They are often cationic and amphiphilic, which favors their interactions with the anionic membranes of microorganisms. Several AMP families do not directly alter membrane integrity but rather target conserved components of the bacterial membranes in a process that provides them with potent and specific antimicrobial activities. Thus, lipopolysaccharides (LPS), lipoteichoic acids (LTA) or the peptidoglycan precursor Lipid II are targeted by a broad series of AMPs. Studying the functional diversity of immune effectors tells us about the essential residues involved in AMP mechanism of action. Marine invertebrates have been found to produce a remarkable diversity of AMPs. Molluscan defensins and crustacean anti-LPS factors (ALF) are diverse in terms of amino acid sequence and show contrasted phenotypes in terms of antimicrobial activity. Their activity is directed essentially against Gram-positive or Gram-negative bacteria due their specific interactions with Lipid II or Lipid A, respectively. Through those interesting examples, we discuss here how sequence diversity generated throughout evolution informs us on residues required for essential molecular interaction at the bacterial membranes and subsequent antibacterial activity. Through the analysis of molecular variants having lost antibacterial activity or shaped novel functions, we also discuss the molecular bases of functional divergence in AMPs.
Resumo:
The present study was carried out to evaluate the chemical and pharmacological properties of essential oil (EO) of Lavandula stoechas L. subsp. luisieri that is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, as 1,8-cineole, lavandulol and necrodane derivatives are the main components of essential oil. It revealed important antioxidant activity with high ability to inhibit the lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as Gram-positive and Gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min. with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited a normal behaviour after EO administration revealing low toxicity. Essential oil of L. luisieri from Alentejo that presents important pharmacological properties and low toxicity is a promised candidate to be used as food supplement or in pharmaceutical applications.
Resumo:
INTRODUCTION: Excessive group 2 carbapenem use may result in decreased bacterial susceptibility. OBJECTIVE: We evaluated the impact of a carbapenem stewardship program, restricting imipenem and meropenem use. METHODS: Ertapenem was mandated for ESBL-producing Enterobacteriaceae infections in the absence of non-fermenting Gram-negative bacilli (GNB) from April 2006 to March 2008. Group 2 carbapenems were restricted for use against GNB infections susceptible only to carbapenems and suspected GNB infections in unstable patients. Cumulative susceptibility tests were done for nosocomial pathogens before and after restriction using Clinical and Laboratory Standards Institute (CLSI) guide-lines.Vitek System or conventional identification methods were performed and susceptibility testing done by disk diffusion according to CLSI.Antibiotic consumption (t-test) and susceptibilities (McNemar's test) were determined. RESULTS: The defined daily doses (DDD) of group 2 carbapenems declined from 61.1 to 48.7 DDD/1,000 patient-days two years after ertapenem introduction (p = 0.027). Mean ertapenem consumption after restriction was 31.5 DDD/1,000 patient-days. Following ertapenem introduction no significant susceptibility changes were noticed among Gram-positive cocci. The most prevalent GNB were P. aeruginosa, Klebsiella pneumoniae, and Acinetobacter spp. There was no change in P. aeruginosa susceptibility to carbapenems. Significantly improved P. aeruginosa and K. pneumoniae ciprofloxacin susceptibilities were observed, perhaps due to decreased group 2 carbapenem use. K. pneumoniae susceptibility to trimethoprim-sulfamethoxazole improved. CONCLUSION: Preferential use of ertapenem resulted in reduced group 2 carbapenem use, with a positive impact on P. aeruginosa and K. pneumoniae susceptibility.
Resumo:
As a part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.), Gram-positive and Gram-negative bacterial isolates were collected from 33 centers in Latin America (centers in Argentina, Brazil, Chile, Colombia, Guatemala, Honduras, Jamaica, Mexico, Panama, Puerto Rico, and Venezuela) from January 2004 to September 2007. Argentina and Mexico were the greatest contributors of isolates to this study. Susceptibilities were determined according to Clinical Laboratory Standards Institute guidelines. Resistance levels were high for most key organisms across Latin America: 48.3% of Staphylococcus aureus isolates were methicillin-resistant while 21.4% of Acinetobacter spp. isolates were imipenem-resistant. Extended-spectrum β-lactamase were reported in 36.7% of Klebsiella pneumoniae and 20.8% of E. coli isolates. Tigecycline was the most active agent against Gram-positive isolates. Tigecycline was also highly active against all Gram-negative organisms, with the exception of Pseuodomonas aeruginosa, against which piperacillin-tazobactam was the most active agent tested (79.3% of isolates susceptible). The in vitro activity of tigecycline against both Gram-positive and Gram-negative isolates indicates that it may be an useful tool for the treatment of nosocomial infections, even those caused by organisms that are resistant to other antibacterial agents.
Resumo:
Background: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results: Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion: Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis.
Resumo:
The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity.
Resumo:
The present article describes an L-amino acid oxidase from Bothrops atrox snake venom as with antiprotozoal activities in Trypanosoma cruzi and in different species of Leishmania (Leishmania braziliensis, Leishmania donovani and Leishmania major). Leishmanicidal effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Leishmania spp. cause a spectrum of diseases, ranging from self-healing ulcers to disseminated and often fatal infections, depending on the species involved and the host`s immune response. BatroxLAAO also displays bactericidal activity against both Gram-positive and Gram-negative bacteria. The apoptosis induced by BatroxLAAO on HL-60 cell lines and PBMC cells was determined by morphological cell evaluation using a mix of fluorescent dyes. As revealed by flow cytometry analysis, suppression of cell proliferation with BatroxLAAO was accompanied by the significant accumulation of cells in the G0/G1 phase boundary in HL-60 cells. BatroxLAAO at 25 mu g/mL and 50 mu g/mL blocked G0-G1 transition, resulting in G0/G1 phase cell cycle arrest, thereby delaying the progression of cells through S and G2/M phase in HL-60 cells. This was shown by an accentuated decrease in the proportion of cells in S phase, and the almost absence of G2/M phase cell population. BatroxLAAO is an interesting enzyme that provides a better understanding of the ophidian envenomation mechanism, and has biotechnological potential as a model for therapeutic agents. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24 h elicited a marked increase in mRNA expression for IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway.. although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
Resumo:
Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified. one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf. one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond, These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ton-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC), They were characterized by. N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination, Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques, This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 mu M or less, Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC, Subfragment 1 (residues I to 10) was active against most of the test microorganisms at concentrations of 10 to 50 mu M. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 mu M. These antibacterial studies indicate that the activity of lactoferricin Is mainly, but not wholly, due to its N-terminal region.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Two series of benzimidazole derivatives were sythesised. The first one was based on 5,6-dinitrobenzimidazole, the second one comprises 2-thioalkyl- and thioaryl-substituted modified benzimidazoles. Antibacterial and antiprotozoal. activity of the newly obtained compounds was studied. Some thioalkyl derivatives showed remarkable activity against nosocomial strains of Stenotrophomonas malthophilia, and an activity comparable to that of metronidazole against Gram-positive and Gram-negative bacteria. Of the tested compounds, 5,6-dichloro-2-(4-nitrobenzylthio)-benzimidazole showed the most distinct antiprotozoal activity.
Resumo:
Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Aqueous extracts and organic solvent extracts of isolated marine cyanobacteria strains were tested for antimicrobial activity against a fungus, Gram-positive and Gram-negative bacteria and for cytotoxic activity against primary rat hepatocytes and HL-60 cells. Antimicrobial activity was based on the agar diffusion assay. Cytotoxic activity was measured by apoptotic cell death scored by cell surface evaluation and nuclear morphology. A high percentage of apoptotic cells were observed for HL-60 cells when treated with cyanobacterial organic extracts. Slight apoptotic effects were observed in primary rat hepatocytes when exposed to aqueous cyanobacterial extracts. Nine cyanobacteria strains were found to have antibiotic activity against two Gram-positive bacteria, Clavibacter michiganensis subsp. insidiosum and Cellulomonas uda. No inhibitory effects were found against the fungus Candida albicans and Gram-negative bacteria. Marine Synechocystis and Synechococcus extracts induce apoptosis in eukaryotic cells and cause inhibition of Gram-positive bacteria. The different activity in different extracts suggests different compounds with different polarities.