929 resultados para Good environmental status (GES)
Resumo:
Several epidemiological and experimental studies has been reported that lutein (LT) presents antioxidant properties. Aim of the present study was to investigate the protective effects of LT against oxidative stress and DNA damage induced by cisplatin (cDDP) in a human derived liver cell line (HepG2). Cell viability and DNA-damage was monitored by MU and comet assays. Moreover, different biochemical parameters related to redox status (glutathione, cytochrome-c and intracellular ROS) were also evaluated. A clear DNA-damage was seen with cDDP (1.0 mu M) treatment. In combination with the carotenoid, reduction of DNA damage was observed after pre- and simultaneous treatment of the cells, but not when the carotenoid was added to the cells after the exposure to cDDP. Exposure of the cells to cDDP also caused significant changes of all biochemical parameters and in co-treatment of the cells with LT, the carotenoid reverted these alterations. The results indicate that cDDP induces pronounced oxidative stress in HepG2 cells that is related to DNA damage and that the supplementation with the antioxidant LT may protect these adverse effects caused by the exposure of the cells to platinum compound, which can be a good predict for chemoprevention. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Various organisms have been characterized by molecular methods, including fungi of the genus Cryptococcus. The purposes of this study were: to determine the discriminatory potential of the RAPD (Random Amplified Polymorphic DNA) primers, the pattern of similarity of the Cryptococcus species, and discuss their useful application in epidemiological studies. We analyzed 10 isolates of each specie/group: C. albidus, C. laurentii complex, C. neoformans var. grubii, all from environmental source, and two ATCC strains, C. neoformans var. grubii ATCC 90112, and C. neoformans var. neoformans ATCC 28957 by RAPD-PCR using the primers CAV1, CAV2, ZAP19, ZAP20, OPB11 and SEQ6. The primers showed a good discriminatory power, revealing important differences between them and between species; the SEQ6 primer discriminated a larger number of isolates of three species. Isolates of C. laurentii showed greater genetic diversity than other species revealed by all six primers. Isolates of C. neoformans were more homogeneous. Only the primer CAV2 showed no amplification of DNA bands for C. albidus. It was concluded that the use of limited number of carefully selected primers allowed the discrimination of different isolates, and some primers (e. g., CAV2 for C. albidus) may not to be applied to some species.
Resumo:
Strategic environmental assessment (SEA) has been applied throughout the world in different sectors and in various ways. This paper reports on results of a PhD research on SEA applied to tourism development planning, reflecting the situation in mid-2010. First, the extent of tourism specific SEA application world-wide is established. Then, based on a review of the quality of 10 selected SEA reports, good practice, as well as challenges, trends and opportunities for tourism specific SEA are identified. Shortcomings of SEA in tourism planning are established and implications for future research are outlined. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed annatto which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA-damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 mu g/kg/bw/day), BIX (0.110 mg/kg/bw/day), NOR (0.011.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA-damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA-damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal-treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury. Environ. Mol. Mutagen., 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
Various organisms have been characterized by molecular methods, including fungi of the genus Cryptococcus. The purposes of this study were: to determine the discriminatory potential of the RAPD (Random Amplified Polymorphic DNA) primers, the pattern of similarity of the Cryptococcus species, and discuss their useful application in epidemiological studies. We analyzed 10 isolates of each specie/group: C. albidus, C. laurentii complex, C. neoformans var. grubii, all from environmental source, and two ATCC strains, C. neoformans var. grubii ATCC 90112, and C. neoformans var. neoformans ATCC 28957 by RAPD-PCR using the primers CAV1, CAV2, ZAP19, ZAP20, OPB11 and SEQ6. The primers showed a good discriminatory power, revealing important differences between them and between species; the SEQ6 primer discriminated a larger number of isolates of three species. Isolates of C. laurentii showed greater genetic diversity than other species revealed by all six primers. Isolates of C. neoformans were more homogeneous. Only the primer CAV2 showed no amplification of DNA bands for C. albidus. It was concluded that the use of limited number of carefully selected primers allowed the discrimination of different isolates, and some primers (e.g., CAV2 for C. albidus) may not to be applied to some species.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
Il Medio Oriente è una regione in cui le scarse risorse idriche giocano un ruolo fondamentale nei rapporti e nelle relazioni tra gli Stati. Soprattutto nell'area di Israele, Palestina e Giordania la natura transfrontaliera delle fonti idriche condivise è considerata da qualche ricercatore come un catalizzatore del più ampio conflitto arabo-israeliano. Altri studiosi, tuttavia, vedono nella cooperazione regionale sulle risorse idriche un potenziale cammino verso una pace duratura veicolata dalla natura interdipendente delle fonti idriche comuni a più territori. Dato che l'acqua è l'elemento che per molti aspetti contribuisce allo sviluppo sociale ed economico e dato che le fonti idriche sotterranee e di superficie non conoscono confini e si muovono liberamente nel territorio, la cooperazione tra gli Stati rivieraschi delle risorse idriche dovrebbe arrivare a prevalere sul conflitto. Unica nel suo genere, l'ong trilaterale israelo-palestinese giordana Friends of the Earth Middle East, FoEME, ha fatto proprio tale auspicio e dal 1994 punta a sviluppare progetti di cooperazione per la salvaguardia del patrimonio naturale dell'area del bacino del fiume Giordano e del Mar Morto. Attraverso l'esperienza del Progetto Good Water Neighbors, GWN, avviato nel 2002, sta lavorando ad una serie di iniziative nel campo dell'environmental awareness e del social empowerment a favore di comunità israeliane, palestinesi e giordane transfrontaliere che condividono risorse idriche sotterranee o di superficie. Operando inizialmente a livello locale per identificare i problemi idrico-ambientali di ogni comunità selezionata e lavorare con i cittadini (ragazzi, famiglie e amministratori municipali) per migliorare la conoscenza idrica locale attraverso attività di educazione ambientale, di water awareness e piani di sviluppo urbano eco-compatibile, il Progetto GWN ha facilitato a livello transfrontaliero i rapporti tra le comunità confinanti abbattendo la barriera di sfiducia e sospetto che normalmente impedisce relazioni pacifiche, ha coadiuvato l'analisi dei problemi idrici comuni cercando di risolverli attraverso uno sforzo programmatico condiviso e sostenibile, per giungere infine a livello regionale ad incoraggiare la gestione idrica comune attraverso lo scambio di informazioni, il dialogo e lo sforzo/impegno cooperativo congiunto tra gli attori parte del GWN al fine di incentivare la pace attraverso l'interesse comune della tutela delle fonti idriche condivise. Gli approcci di local development e participation, le azioni di confidence building e il peacebuilding attraverso la tutela ambientale applicati con il metodo di bottom up all'interno di un contesto non pacificato come quello del conflitto arabo-israeliano, fanno del Progetto GWN un esperimento innovativo e originale. Le comunità israeliane, palestinesi e giordane selezionate hanno imparato a migliorare le proprie condizioni idrico-ambiennali cooperando assieme e sfruttando l'interdipendenza dalle fonti idriche condivise, avviando nel contempo rapporti pacifici con società sempre considerate nemiche. La sfida è stata quella di far comprendere le potenzialità di una cooperazione locale, in vista di un coordinamento regionale e di uno sforzo comune in grado di generare un beneficio collettivo. La lezione appresa finora durante questi primi sette anni di Progetto è stata quella di capire che non è necessario attendere la fine del conflitto per poter essere di aiuto alle proprie comunità o per un benessere personale, ma si può agire subito, anche nel pieno dell'Intifada al-Aqsa e con i coprifuoco.
Resumo:
During the last years we assisted to an exponential growth of scientific discoveries for catalysis by gold and many applications have been found for Au-based catalysts. In the literature there are several studies concerning the use of gold-based catalysts for environmental applications and good results are reported for the catalytic combustion of different volatile organic compounds (VOCs). Recently it has also been established that gold-based catalysts are potentially capable of being effectively employed in fuel cells in order to remove CO traces by preferential CO oxidation in H2-rich streams. Bi-metallic catalysts have attracted increasing attention because of their markedly different properties from either of the costituent metals, and above all their enhanced catalytic activity, selectivity and stability. In the literature there are several studies demostrating the beneficial effect due to the addition of an iron component to gold supported catalysts in terms of enhanced activity, selectivity, resistence to deactivation and prolonged lifetime of the catalyst. In this work we tried to develop a methodology for the preparation of iron stabilized gold nanoparticles with controlled size and composition, particularly in terms of obtaining an intimate contact between different phases, since it is well known that the catalytic behaviour of multi-component supported catalysts is strongly influenced by the size of the metal particles and by their reciprocal interaction. Ligand stabilized metal clusters, with nanometric dimensions, are possible precursors for the preparation of catalytically active nanoparticles with controlled dimensions and compositions. Among these, metal carbonyl clusters are quite attractive, since they can be prepared with several different sizes and compositions and, moreover, they are decomposed under very mild conditions. A novel preparation method was developed during this thesis for the preparation of iron and gold/iron supported catalysts using bi-metallic carbonyl clusters as precursors of highly dispersed nanoparticles over TiO2 and CeO2, which are widely considered two of the most suitable supports for gold nanoparticles. Au/FeOx catalysts were prepared by employing the bi-metallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO)16] (Fe/Au=1) and [NEt4][AuFe4(CO)16] (Fe/Au=4), and for comparison FeOx samples were prepared by employing the homometallic [NEt4][HFe3(CO)11] cluster. These clusters were prepared by Prof. Longoni research group (Department of Physical and Inorganic Chemistry- University of Bologna). Particular attention was dedicated to the optimization of a suitable thermal treatment in order to achieve, apart from a good Au and Fe metal dispersion, also the formation of appropriate species with good catalytic properties. A deep IR study was carried out in order to understand the physical interaction between clusters and different supports and detect the occurrence of chemical reactions between them at any stage of the preparation. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS was performed in order to investigate the catalysts properties, whit particular attention to the interaction between Au and Fe and its influence on the catalytic activity. This novel preparation method resulted in small gold metallic nanoparticles surrounded by highly dispersed iron oxide species, essentially in an amorphous phase, on both TiO2 and CeO2. The results presented in this thesis confirmed that FeOx species can stabilize small Au particles, since keeping costant the gold content but introducing a higher iron amount a higher metal dispersion was achieved. Partial encapsulation of gold atoms by iron species was observed since the Au/Fe surface ratio was found much lower than bulk ratio and a strong interaction between gold and oxide species, both of iron oxide and supports, was achieved. The prepared catalysts were tested in the total oxidation of VOCs, using toluene and methanol as probe molecules for aromatics and alchols, respectively, and in the PROX reaction. Different performances were observed on titania and ceria catalysts, on both toluene and methanol combustion. Toluene combustion on titania catalyst was found to be enhanced increasing iron loading while a moderate effect on FeOx-Ti activity was achieved by Au addition. In this case toluene combustion was improved due to a higher oxygen mobility depending on enhanced oxygen activation by FeOx and Au/FeOx dispersed on titania. On the contrary ceria activity was strongly decreased in the presence of FeOx, while the introduction of gold was found to moderate the detrimental effect of iron species. In fact, excellent ceria performances are due to its ability to adsorb toluene and O2. Since toluene activation is the determining factor for its oxidation, the partial coverage of ceria sites, responsible of toluene adsorption, by FeOx species finely dispersed on the surface resulted in worse efficiency in toluene combustion. Better results were obtained for both ceria and titania catalysts on methanol total oxidation. In this case, the performances achieved on differently supported catalysts indicate that the oxygen mobility is the determining factor in this reaction. The introduction of gold on both TiO2 and CeO2 catalysts, lead to a higher oxygen mobility due to the weakening of both Fe-O and Ce-O bonds and consequently to enhanced methanol combustion. The catalytic activity was found to strongly depend on oxygen mobility and followed the same trend observed for catalysts reducibility. Regarding CO PROX reaction, it was observed that Au/FeOx titania catalysts are less active than ceria ones, due to the lower reducibility of titania compared to ceria. In fact the availability of lattice oxygen involved in PROX reaction is much higher in the latter catalysts. However, the CO PROX performances observed for ceria catalysts are not really high compared to data reported in literature, probably due to the very low Au/Fe surface ratio achieved with this preparation method. CO preferential oxidation was found to strongly depend on Au particle size but also on surface oxygen reducibility, depending on the different oxide species which can be formed using different thermal treatment conditions or varying the iron loading over the support.
Resumo:
The PhD project was focused on the study of the poultry welfare conditions and improvements. The project work was divided into 3 main research activities. A) Field evaluation of chicken meat rearing conditions kept in intensive farms. Considering the lack of published reports concerning the overall Italian rearing conditions of broiler chickens, a survey was carried out to assess the welfare conditions of broiler reared in the most important poultry companies in Italy to verify if they are in accordance with the advices given in the European proposal COM (2005) 221 final. Chicken farm conditions, carcass lesions and meat quality were investigated. 1. The densities currently used in Italy are in accordance with the European proposal COM 221 final (2005) which suggests to keep broilers at a density lower than 30-32 kg live weight/m2 and to not exceed 38-40 kg live weight/m2. 2. The mortality rates in summer and winter agree with the mortality score calculated following the formula reported in the EU Proposal COM 221 final (2005). 3. The incidence of damaged carcasses was very low and did not seem related to the stocking density. 4. The FPD scores were generally above the maximum limit advised by the EU proposal COM 221 final (2005), although the stocking densities were lower than 30-32 kg live weight per m2. 5. It can be stated that the control of the environmental conditions, particularly litter quality, appears a key issue to control the onset of foot dermatitis. B) Manipulation of several farm parameters, such litter material and depth, stocking density and light regimen to improve the chicken welfare conditions, in winter season. 1. Even though 2 different stocking densities were established in this study, the performances achieved from the chickens were almost identical among groups. 2. The FCR was significantly better in Standard conditions contrarily to birds reared in Welfare conditions with lower stocking density, more litter material and with a light program of 16 hours light and 8 hours dark. 3. In our trial, in Standard groups we observed a higher content of moisture, nitrogen and ammonia released from the litter. Therefore it can be assumed that the environmental characteristics have been positively changed by the improvements of the rearing conditions adopted for Welfare groups. 4. In Welfare groups the exhausted litters of the pens were dryer and broilers showed a lower occurrence of FPD. 5. The prevalence of hock burn lesions, like FPD, is high with poor litter quality conditions. 6. The combined effect of a lower stocking density, a greater amount of litter material and a photoperiod similar to the natural one, have positively influenced the chickens welfare status, as a matter of fact the occurrence of FPD in Welfare groups was the lowest keeping the score under the European threshold of the proposal COM 221 final(2005). C) The purpose of the third research was to study the effect of high or low stocking density of broiler chickens, different types of litter and the adoption of short or long lighting regimen on broiler welfare through the evaluation of their productivity and incidence of foot pad dermatitis during the hot season. 1. The feed efficiency was better for the Low Density than for High Density broilers. 2. The appearance of FPD was not influenced by stocking density. 3. The foot examination revealed that the lesions occurred more in birds maintained on chopped wheat straw than on wood shaving. 4. In conclusion, the adoptions of a short light regimen similar to that occurring in nature during summer reduces the feed intake without modify the growth rate thus improving the feed efficiency. Foot pad lesion were not affected neither by stocking densities nor by light regimens whereas wood shavings exerted a favourable effect in preserving foot pad in good condition. D) A study was carried out to investigate more widely the possible role of 25-hydroxycholecalciferol supplemented in the diet of a laying hen commercial strain (Lohmann brown) in comparison of diets supplemented with D3 or with D3 + 25- hydroxycholecalciferol. Egg traits during a productive cycle as well as the bone characteristics of the layers have been as well evaluated to determine if there the vitamin D3 may enhance the welfare status of the birds. 1. The weight of the egg and of its components is often greater in hens fed a diet enriched with 25-hydroxycholecalciferol. 2. Since eggs of treated groups are heavier and a larger amount of shell is needed, a direct effect on shell strength is observed. 3. At 30 and at 50 wk of age hens fed 25 hydroxycholecalciferol exhibited greater values of bone breaking force. 4. Radiographic density values obtained in the trial are always higher in hens fed with 25-hydroxycholecalciferol of both treatments: supplemented for the whole laying cycle (25D3) or from 40 weeks of age onward (D3+25D3).
Resumo:
The present Thesis studies three alternative solvent groups as sustainable replacement of traditional organic solvents. Some aspects of fluorinated solvents, supercritical fluids and ionic liquids, have been analysed with a critical approach and their effective “greenness” has been evaluated from the points of view of the synthesis, the properties and the applications. In particular, the attention has been put on the environmental and human health issues, evaluating the eco-toxicity, the toxicity and the persistence, to underline that applicability and sustainability are subjects with equal importance. The “green” features of fluorous solvents and supercritical fluids are almost well-established; in particular supercritical carbon dioxide (scCO2) is probably the “greenest” solvent among the alternative solvent systems developed in the last years, enabling to combine numerous advantages both from the point of view of industrial/technological applications and eco-compatibility. In the Thesis the analysis of these two classes of alternative solvents has been mainly focused on their applicability, rather than the evaluation of their environmental impact. Specifically they have been evaluated as alternative media for non-aqueous biocatalysis. For this purpose, the hydrophobic ion pairing (HIP), which allows solubilising enzymes in apolar solvents by an ion pairing between the protein and a surfactant, has been investigated as effective enzymatic derivatisation technique to improve the catalytic activity under homogeneous conditions in non conventional media. The results showed that the complex enzyme-surfactant was much more active both in fluorous solvents and in supercritical carbon dioxide than the native form of the enzyme. Ionic liquids, especially imidazolium salts, have been proposed some years ago as “fully green” alternative solvents; however this epithet does not take into account several “brown” aspects such as their synthesis from petro-chemical starting materials, their considerable eco-toxicity, toxicity and resistance to biodegradation, and the difficulty of clearly outline applications in which ionic liquids are really more advantageous than traditional solvents. For all of these reasons in this Thesis a critical analysis of ionic liquids has been focused on three main topics: i) alternative synthesis by introducing structural moieties which could reduce the toxicity of the most known liquid salts, and by using starting materials from renewable resources; ii) on the evaluation of their environmental impact through eco-toxicological tests (Daphnia magna and Vibrio fischeri acute toxicity tests, and algal growth inhibition), toxicity tests (MTT test, AChE inhibition and LDH release tests) and fate and rate of aerobic biodegradation in soil and water; iii) and on the demonstration of their effectiveness as reaction media in organo-catalysis and as extractive solvents in the recovery of vegetable oil from terrestrial and aquatic biomass. The results about eco-toxicity tests with Daphnia magna, Vibrio fischeri and algae, and toxicity assay using cultured cell lines, clearly indicate that the difference in toxicity between alkyl and oxygenated cations relies in differences of polarity, according to the general trend of decreasing toxicity by decreasing the lipophilicity. Independently by the biological approach in fact, all the results are in agreement, showing a lower toxicity for compounds with oxygenated lateral chains than for those having purely alkyl lateral chains. These findings indicate that an appropriate choice of cation and anion structures is important not only to design the IL with improved and suitable chemico-physical properties but also to obtain safer and eco-friendly ILs. Moreover there is a clear indication that the composition of the abiotic environment has to be taken into account when the toxicity of ILs in various biological test systems is analysed, because, for example, the data reported in the Thesis indicate a significant influence of salinity variations on algal toxicity. Aerobic biodegradation of four imidazolium ionic liquids, two alkylated and two oxygenated, in soil was evaluated for the first time. Alkyl ionic liquids were shown to be biodegradable over the 6 months test period, and in contrast no significant mineralisation was observed with oxygenated derivatives. A different result was observed in the aerobic biodegradation of alkylated and oxygenated pyridinium ionic liquids in water because all the ionic liquids were almost completely degraded after 10 days, independently by the number of oxygen in the lateral chain of the cation. The synthesis of new ionic liquids by using renewable feedstock as starting materials, has been developed through the synthesis of furan-based ion pairs from furfural. The new ammonium salts were synthesised in very good yields, good purity of the products and wide versatility, combining low melting points with high decomposition temperatures and reduced viscosities. Regarding the possible applications as surfactants and biocides, furan-based salts could be a valuable alternative to benzyltributylammonium salts and benzalkonium chloride that are produced from non-renewable resources. A new procedure for the allylation of ketones and aldehydes with tetraallyltin in ionic liquids was developed. The reaction afforded high yields both in sulfonate-containing ILs and in ILs without sulfonate upon addition of a small amount of sulfonic acid. The checked reaction resulted in peculiar chemoselectivity favouring aliphatic substrates towards aromatic ketones and good stereoselectivity in the allylation of levoglucosenone. Finally ILs-based systems could be easily and successfully recycled, making the described procedure environmentally benign. The potential role of switchable polarity solvents as a green technology for the extraction of vegetable oil from terrestrial and aquatic biomass has been investigated. The extraction efficiency of terrestrial biomass rich in triacylglycerols, as soy bean flakes and sunflower seeds, was comparable to those of traditional organic solvents, being the yield of vegetable oils recovery very similar. Switchable polarity solvents as been also exploited for the first time in the extraction of hydrocarbons from the microalga Botryococcus braunii, demonstrating the efficiency of the process for the extraction of both dried microalgal biomass and directly of the aqueous growth medium. The switchable polarity solvents exhibited better extraction efficiency than conventional solvents, both with dried and liquid samples. This is an important issue considering that the harvest and the dewatering of algal biomass have a large impact on overall costs and energy balance.
Resumo:
A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.
Resumo:
Alzheimer's disease (AD) is probably caused by both genetic and environmental risk factors. The major genetic risk factor is the E4 variant of apolipoprotein E gene called apoE4. Several risk factors for developing AD have been identified including lifestyle, such as dietary habits. The mechanisms behind the AD pathogenesis and the onset of cognitive decline in the AD brain are presently unknown. In this study we wanted to characterize the effects of the interaction between environmental risk factors and apoE genotype on neurodegeneration processes, with particular focus on behavioural studies and neurodegenerative processes at molecular level. Towards this aim, we used 6 months-old apoE4 and apoE3 Target Replacement (TR) mice fed on different diets (high intake of cholesterol and high intake of carbohydrates). These mice were evaluated for learning and memory deficits in spatial reference (Morris Water Maze (MWM)) and contextual learning (Passive Avoidance) tasks, which involve the hippocampus and the amygdala, respectively. From these behavioural studies we found that the initial cognitive impairments manifested as a retention deficit in apoE4 mice fed on high carbohydrate diet. Thus, the genetic risk factor apoE4 genotype associated with a high carbohydrate diet seems to affect cognitive functions in young mice, corroborating the theory that the combination of genetic and environmental risk factors greatly increases the risk of developing AD and leads to an earlier onset of cognitive deficits. The cellular and molecular bases of the cognitive decline in AD are largely unknown. In order to determine the molecular changes for the onset of the early cognitive impairment observed in the behavioural studies, we performed molecular studies, with particular focus on synaptic integrity and Tau phosphorylation. The most relevant finding of our molecular studies showed a significant decrease of Brain-derived Neurotrophic Factor (BDNF) in apoE4 mice fed on high carbohydrate diet. Our results may suggest that BDNF decrease found in apoE4 HS mice could be involved in the earliest impairment in long-term reference memory observed in behavioural studies. The second aim of this thesis was to study possible involvement of leptin in AD. There is growing evidence that leptin has neuroprotective properties in the Central Nervous System (CNS). Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. However, there are still numerous questions, regarding the molecular mechanism by which leptin acts, that remain unanswered. Thus, given to the importance of the involvement of leptin in AD, we wanted to clarify the function of leptin in the pathogenesis of AD and to investigate if apoE genotype affect leptin levels through studies in vitro, in mice and in human. Our findings suggest that apoE4 TR mice showed an increase of leptin in the brain. Leptin levels are also increased in the cerebral spinal fluid of AD patients and apoE4 carriers with AD have higher levels of leptin than apoE3 carriers. Moreover, leptin seems to be expressed by reactive glial cells in AD brains. In vitro, ApoE4 together with Amyloid beta increases leptin production by microglia and astrocytes. Taken together, all these findings suggest that leptin replacement might not be a good strategy for AD therapy. Our results show that high leptin levels were found in AD brains. These findings suggest that, as high leptin levels do not promote satiety in obese individuals, it might be possible that they do not promote neuroprotection in AD patients. Therefore, we hypothesized that AD brain could suffer from leptin resistance. Further studies will be critical to determine whether or not the central leptin resistance in SNC could affect its potential neuroprotective effects.
Resumo:
For some study cases (the Cathedral of Modena, Italy, XII-XIV century; the Ducal Palace in Mantua, Italy, XVI century; the church of San Francesco in Fano, Italy, XIV-XIX century), considered as representative of the use of natural and artificial stones in historical architecture, the complex interaction between environ-mental aggressiveness, materials’ microstructural characteristics and degradation was investigated. From the results of such analyses, it was found that materials microstructure plays a fundamental role in the actual extent to which weathering mechanisms affect natural and artificial stones. Consequently, the need of taking into account the important role of material microstructure, when evaluating the environmental aggressiveness to natural and artificial stones, was highlighted. Therefore, a possible quantification of the role of microstructure on the resistance to environmental attack was investigated. By exposing stone samples, with significantly different microstructural features, to slightly acidic aqueous solutions, simulating clean and acid rain, a good correlation between weight losses and the product of carbonate content and specific surface area (defined as the “vulnerable specific surface area”) was found. Alongside the evaluation of stone vulnerability, the development of a new consolidant for weathered carbonate stones was undertaken. The use of hydroxya-patite, formed by reacting the calcite of the stone with an aqueous solution of di-ammonium hydrogen phosphate, was found to be a promising consolidating tech-nique for carbonates stones. Indeed, significant increases in the mechanical prop-erties can be achieved after the treatment, which has the advantage of simply con-sisting in a non-hazardous aqueous solution, able to penetrate deeply into the stone (> 2 cm) and bring significant strengthening after just 2 days of reaction. Furthermore, the stone sorptivity is not eliminated after treatment, so that water and water vapor exchanges between the stone and the environment are not com-pletely blocked.
Resumo:
Plutonium represents the major contribution to the radiotoxicity of spent nuclear fuel over storage times of up to several hundred thousand years. The speciation of plutonium in aquifer systems is important in order to assess the risks of high-level nuclear waste disposal and to acquire a deep knowledge of the mobilization and immobilization behavior of plutonium. In aqueous solutions, plutonium can coexist in four oxidation states and each one of them has different chemical and physical behavior. Tetravalent plutonium is the most abundant under natural conditions. Therefore, detailed speciation studies of tetravalent plutonium in contact with humic substances (HS) and kaolinite as a model clay mineral have been performed in this work. Plutonium is present in the environment at an ultratrace level. Therefore, speciation of Pu at the ultratrace level is mandatory. Capillary electrophoresis (CE) coupled to resonance ionization mass spectrometry (RIMS) was used as a new speciation method. CE-RIMS enables to improve the detection limit for plutonium species by 2 to 3 orders of magnitude compared to the previously developed CE-ICP-MS. For understanding the behavior of Pu(IV) in aqueous systems, redox reactions, complexation, and sorption behavior of plutonium were studied. The redox behavior of plutonium in contact with humic acid (HA) and fulvic acid (FA) was investigated. A relatively fast reduction of Pu(VI) in contact with HS was observed. It was mainly reduced to Pu(IV) and Pu(III) within a couple of weeks. The time dependence of the Pu(IV) complexation with Aldrich HA was investigated and a complex constant (logßLC) between 6.4 - 8.4 of Pu(IV) was determined by means of ultrafiltration taking into account the loading capacity (LC). The sorption of tetravalent plutonium onto kaolinite was investigated as a function of pH in batch experiments under aerobic and anaerobic conditions. The sorption edge was found at about pH = 1 and a maximum sorption at around pH = 8.5. In the presence of CO2 at pH > 8.5, the sorption of plutonium was decreased probably due to the formation of soluble carbonate complexes. For comparison, the sorption of Th(IV) onto kaolinite was also investigated and consistent results were found. The Pu(IV) sorption onto kaolinite was studied by XANES and EXAFS at pH 1, 4, 9 and the sorbed species on kaolinite surface was Pu(IV). Depending on the pH, only 1 - 10 % of the sorbed plutonium is desorbed from kaolinite and released into a fresh solution at the same pH value. Furthermore, the sorption of HS onto kaolinite was studied as a function of pH at varying concentrations of HS, as a prerequisite to understand the more complex ternary system. The sorption of HA onto kaolinite was found to be higher than that of FA. The investigation of the ternary systems (plutonium-kaolinite-humic substances) is performed as a function of pH, concentration of HS, and the sequences of adding the reactants. The presence of HS strongly influences the sorption of Pu(IV) onto kaolinite over the entire pH range. For comparison, the influence of HS on the sorption of Th(IV) onto kaolinite was also investigated and a good agreement with the results of Pu(IV) was obtained.