926 resultados para Gondwana biogeography
Resumo:
Aim To examine the effect of climate change on the occurrence and distribution of Pipistrellus nathusii (Nathusius' pipistrelle) in the United Kingdom (UK).Location We modelled habitat and climatic associations of P. nathusii in the UK and applied this model to the species' historical range in continental Europe.Methods A binomial logistic regression model was constructed relating the occurrence of P. nathusii to climate and habitat characteristics using historical species occurrence records (1940-2006) and CORINE land cover data. This model was applied to historical and projected climate data to examine changes in suitable range (1940-2080) of this species. We tested the predictive ability of the model with known records in the UK after 2006 and applied the model to the species' known range in Europe.Results The distribution of P. nathusii was related positively to the area of water bodies, woodland and small areas of urbanization, and negatively related to the area of peat/heathland. Species records were associated with higher minimum temperatures, low seasonal variation in temperature and intermediate rainfall. We found that suitable areas have existed in the UK since the 1940s and that these have expanded. The model had high predictive power when applied to new records after 2006, with a correct classification rate of 70%, estimated by receiver operating characteristic analysis. Based on climate projections, our model suggests a potential twofold increase in the area suitable for P. nathusii in the UK by 2050. The single most influential climate variable contributing to range increase was the projected increase in minimum temperature. When applied to Europe, the model predictions had best predictive capability of known records in western areas of the species' range, where P. nathusii is present during the winter.Main conclusions We show that a mobile, migratory species has adapted its range in response to recent climate change on a continental scale. We believe this may be the first study to demonstrate a case of range change linked to contemporary climate change in a mammal species in Europe.
Resumo:
Aim We carried out a phylogeographic study across the range of the herbaceous plant species Monotropa hypopitys L. in North America to determine whether its current disjunct distribution is due to recolonization from separate eastern and western refugia after the Last Glacial Maximum (LGM). Location North America: Pacific Northwest and north-eastern USA/south-eastern Canada. Methods Palaeodistribution modelling was carried out to determine suitable climatic regions for M. hypopitys at the LGM. We analysed between 155 and 176 individuals from 39 locations spanning the species' entire range in North America. Sequence data were obtained for the chloroplast rps2 gene (n=168) and for the nuclear ITS region (n=158). Individuals were also genotyped for eight microsatellite loci (n=176). Interpolation of diversity values was used to visualize the range-wide distribution of genetic diversity for each of the three marker classes. Minimum spanning networks were constructed showing the relationships between the rps2 and ITS haplotypes, and the geographical distributions of these haplotypes were plotted. The numbers of genetic clusters based on the microsatellite data were estimated using Bayesian clustering approaches. Results The palaeodistribution modelling indicated suitable climate envelopes for M. hypopitys at the LGM in both the Pacific Northwest and south-eastern USA. High levels of genetic diversity and endemic haplotypes were found in Oregon, the Alexander Archipelago, Wisconsin, and in the south-eastern part of the species' distribution range. Main conclusions Our results suggest a complex recolonization history for M. hypopitys in North America, involving persistence in separate eastern and western refugia. A generally high degree of congruence between the different marker classes analysed indicated the presence of multiple refugia, with at least two refugia in each area. In the west, putative refugia were identified in Oregon and the Alexander Archipelago, whereas eastern refugia may have been located in the southern part of the species' current distribution, as well as in the 'Driftless Area'. These findings are in contrast to a previous study on the related species Orthilia secunda, which has a similar disjunct distribution to M. hypopitys, but which appears to have recolonized solely from western refugia. © 2011 Blackwell Publishing Ltd.
Resumo:
We use new data on the timing of the transition to agriculture, developed by Putterman and Trainor (2006), to test the theory of Diamond (1997) and Olsson and Hibbs (2005) that an earlier transition is reflected in higher incomes today. Our results confirm the theory, even after controlling for institutional quality and other geographical factors. The date of transition is correlated with prehistoric biogeography (the availability of wild grasses and large domesticable animal species). The factors conducive to high per capita incomes today are good institutions, an early transition to agriculture, access to the sea and a low incidence of fatal malaria. Geographical influences have been at work in all of these proximate determinants of per capita income.
Resumo:
Aim:
The distribution of the Lusitanian flora and fauna, species which are found only in southern and western Ireland and in northern Spain and Portugal but which are absent from intervening countries, represents one of the classic conundrums of biogeography. The aim of the present study was to determine whether the distribution of the Lusitanian plant species Daboecia cantabrica was due to persistence in separate Irish and Iberian refugia, or has resulted from post-glacial recolonization followed by subsequent extinction of intervening populations.
Location:
Northern Spain and Co. Galway, western Ireland.
Methods:
Palaeodistribution modelling using Maxent was employed to identify putative refugial areas for D. cantabrica at the Last Glacial Maximum (LGM). Phylogeographical analysis of samples from 64 locations in Ireland and Spain were carried out using a chloroplast marker (atpB–rbcL), the nuclear ITS region, and an anonymous nuclear single-copy locus.
Results:
The palaeodistribution model indicated areas with a high probability of survival for D. cantabrica at the LGM off the western coast of Galicia in Spain, and in the Bay of Biscay. Spanish populations exhibited substantially higher genetic diversity than Irish populations at all three loci, as well as geographical structuring of haplotypes within Spain consistent with divergence in separate refugia. Spanish populations also exhibited far more endemic haplotypes. Divergence time between Irish and Spanish populations associated with the putative Biscay refugium was estimated as 3.333–32 ka.
Main conclusions:
Our data indicate persistence by D. cantabrica throughout the LGM in two separate southern refugia: one in western Galicia and one in the area off the coast of western France which now lies in the Bay of Biscay. Spain was recolonized from both refugia, whilst Ireland was most likely recolonized from the Biscay refugium. On the balance of evidence across the three marker types and the palaeodistribution modelling, our findings do not support the idea of in situ survival of D. cantabrica in Ireland, contrary to earlier suggestions. The fact that we cannot conclusively rule out the existence of a small, more northerly refugium, however, highlights the need for further analysis of Lusitanian plant species.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
We tested whether the distribution of three common springtail species (Gressittacantha terranova, Gomphiocephalus hodgsoni and Friesea grisea) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.
Victoria Land, Ross Dependency, Antarctica.
Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.
Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea.
No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.
Resumo:
The vegetation of Europe has undergone substantial changes during the course of the Holocene epoch, resulting from range expansion of plants following climate amelioration, competition between taxa and disturbance through anthropogenic activities. Much of the detail of this pattern is understood from
decades of pollen analytical work across Europe, and this understanding has been used to address questions relating to vegetation-climate feedback, biogeography and human impact. Recent advances in modelling the relationship between pollen and vegetation now make it possible to transform pollen
proportions into estimates of vegetation cover at both regional and local spatial scales, using the Landscape Reconstruction Algorithm (LRA), i.e. the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) and the LOVE (LOcal VEgetation) models. This paper presents the compilation and analysis of 73 pollen stratigraphies from the British Isles, to assess the application of the LRA and describe the pattern of landscape/woodland openness (i.e. the cover of low herb and bushy vegetation) through the Holocene. The results show that multiple small sites can be used as an effective replacement for a single large site for the reconstruction of regional vegetation cover. The REVEALS vegetation estimates imply that the British Isles had a greater degree of landscape/woodland openness at the regional scale than areas on the European mainland. There is considerable spatial bias in the British Isles dataset towards wetland areas and uplands, which may explain higher estimates of landscape openness compared with Europe. Where multiple estimates of regional vegetation are available from within the same region inter-regional differences are greater than intra-regional differences, supporting the use of the REVEALS model to the estimation of regional vegetation from pollen data.
Resumo:
Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling or imaging rural scenes of crime and control locations as evidence. Most of the associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have had no such exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology is featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law
Resumo:
Aim: We used a combination of modelling and genetic approaches to investigate whether Pinguicula grandiflora and Saxifraga spathularis, two species that exhibit disjunct Lusitanian distributions, may have persisted through the Last Glacial Maximum (LGM, c. 21 ka) in separate northern and southern refugia.
Location: Northern and eastern Spain and south-western Ireland.
Methods: Palaeodistribution modelling using maxent was used to identify putative refugial areas for both species at the LGM, as well as to estimate their distributions during the Last Interglacial (LIG, c. 120 ka). Phylogeographical analysis of samples from across both species' ranges was carried out using one chloroplast and three nuclear loci for each species.
Results: The palaeodistribution models identified very limited suitable habitat for either species during the LIG, followed by expansion during the LGM. A single, large refugium across northern Spain and southern France was postulated for P. grandiflora. Two suitable regions were identified for S. spathularis: one in northern Spain, corresponding to the eastern part of the species' present-day distribution in Iberia, and the other on the continental shelf off the west coast of Brittany, south of the limit of the British–Irish ice sheet. Phylogeographical analyses indicated extremely reduced levels of genetic diversity in Irish populations of P. grandiflora relative to those in mainland Europe, but comparable levels of diversity between Irish and mainland European populations of S. spathularis, including the occurrence of private hapotypes in both regions.
Main conclusions: Modelling and phylogeographical analyses indicate that P. grandiflora persisted through the LGM in a southern refugium, and achieved its current Irish distribution via northward dispersal after the retreat of the ice sheets. Although the results for S. spathularis are more equivocal, a similar recolonization scenario also seems the most likely explanation for the species' current distribution.
Resumo:
A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non-random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade-size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region-specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.
Resumo:
Aim To examine the effect on the observed relationship betw een spatial turnover and latitude of both the measure of beta diversity used and the method of analysis.
Location The empirical analyses presented herein are for the New World.
Methods We take the spatial distributions of the owls of the New World as an exemplar data set to investigate the patterns of beta diversity across latitudes revealed by different analytical methods. To illustrate the strengths and weaknesses of alternative measures of beta diversity and different analytical approaches, we also use a simple random distribution model, focusing in particular on the influence of richness gradients and landmass geometry.
Results Our simple spatial model of turnover demonstrates that different combinations of analytical approach and measure of beta diversity can give rise to strikingly different relationships between turnover and latitude. The analyses of the bird data for the owls of the New World demonstrate that this observation extends to real data.
Conclusions For the particular assemblage considered, we present strong evidence that species richness declines at higher latitudes, and there is also some evidence that species turnover is greater nearer the equator, despite conceptual and practical difficulties involved in analysing spatial patterns of species turnover. We suggest some ways of overcoming these difficulties.
Resumo:
Aim Species generally become rarer and more patchily distributed as the margins of their ranges are approached. We predicted that in such marginal sites, tree species would tend to occur where some key environmental factors are at particularly favourable levels, compensating in part for the low overall suitability of marginal sites.
Location The article considers the spatial distributions of trees in Southeast Alaska (the Alaskan 'panhandle').
Methods We quantified range marginality using spatial distributions of eight tree species across more than one thousand surveyed sites in Southeast Alaska. For each species we derived a site core/margin index using a three-dimensional trend surface generated from logistic regression on site coordinates. For each species, the relationships between the environmental factors slope, aspect and site marginality were then compared for occupied and unoccupied sets of sites.
Results We found that site slope is important for more Alaskan tree species than aspect. Three out of eight had a significant core/margin by occupied/unoccupied interaction, tending to be present in significantly shallower-sloped (more favourable) sites in the marginal areas than the simple core/margin trend predicted. For site aspect, one species had a significant interaction, selecting potentially more favourable northerly aspects in marginal areas. A finer-scale analysis based on the same data came to the same overall conclusions.
Conclusions There is evidence that several tree species in Alaska tend to occur in especially favourable sites in marginal areas. In these marginal areas, these species amplify habitat preferences shown in core areas.
Resumo:
The freshwater ostracod Tonnacypris glaciallis (Sars, 1890) is reported from the European Pleistocene for the first time. The historical allocation of the species is discussed, and the species composition and characteristics of Tonnacypris is Diebel & Pietrzeniuk (1975) and its phylozoogeography are considered. The significance of T. glacialis is reviewed, particularly from the viewpoint of the possible implications of parthenogenesis (and occasional-male production) for the Quaternary history of the genus, and for the use of the species in palaeoenvironmental reconstruction. It is suggested that the Pleistocene fossil occurrence of I: glacialis in modern temperate latitudes is a robust indicator of mean summer temperatures of 6 degrees C.