873 resultados para Glutathione - S
Resumo:
Perfluorinated organic compounds (PFOCs) are emerging persistent organic pollutants (POPs) widely present in the environment, wildlife and human. We studied the cellular toxicology of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on oxidative stress and induction of apoptosis in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to PFOS or PFOA (0, 1, 5, 15 and 30 mg L-1) for 24 h, and a dose-dependent decrease in cell viability was determined using trypan blue exclusion method. Significant induction of reactive oxygen species (ROS) accompanied by increases in activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were found, while activities of glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were decreased. Glutathione (GSH) content was reduced following treatment of PFOA and PFOS. A dose-dependent increase in the lipid peroxidation (LPO) level (measured as maleic dialdehyde, MDA) was observed only in the PFOA exposure groups, whereas LPO remained unchanged in the PFOS exposure groups. Furthermore, a significant activation of caspase-3, -8, -9 activities was evident in both PFOS and PFOA exposure groups. Typical DNA fragmentation (DNA laddering) was further characterized by agarose gel electrophoresis. The overall results demonstrated that PFOS and PFOA are able to produce oxidative stress and induce apoptosis with involvement of caspases in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 mu g l(-1) for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid-reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The oligohaline cyanobacterium Aphanizomenon flos-aquae (L.) Ralfs (A. flos-aquae) has been reported in several countries to produce paralytic shellfish poisons (PSPs) or protracted toxic effects. In the past years, A. flos-aquae blooms have occurred annually in the eutrophic Lake Dianchi (300 km(2) in area, located in southwestern China). Material from natural blooms dominated by A. flosaquae was collected and lyophilized. Acute toxicity testing was performed by mouse bioassay using extracts from the lyophilized material. Clear symptoms of PSPs, intoxications were observed. To confirm the production of PSPs, a strain of A. flos-aquae (DC-1) was isolated and maintained in culture. Histopathological effects were studied by examining the organ damages using transmission electron microscopy (TEM). Slight hepatocytic damage with swollen mitochondria was found. The ultrastructural pulmonary lesions were characterized by distortied nuclei and indenting of karyotheca, together with degeneration and tumefaction of mitochondria and endoplasmic reticulum. Control animals injected with acetic acid did not exhibit histopathological damage in any organ. Toxic effects of cultured algal cells on enzymatic systems in the mouse were studied using sublethal doses of extracts. Significant glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) increases, together with decrease of the glutathione (GSH) level, were measured. These results indicated a potential role of PSPs intoxicating and metabolizing in the test animals. HPLC-FLD and LC/MS analysis of extracts from cultured material demonstrated the PSP toxins produced by A. flos-aquae bloom. To the best of our knowledge, this is the first study reporting chemically and toxicologically confirmed PSP toxins related to A. flosaquae in China. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The insecticide dichlorodiphenyltrichloroethane (DDT) is persistent in the environment, and continues to cause health problems. Tetrahymena has potential as a model organism for assaying low levels of DDT and for analysing the mechanisms of its toxicity. We constructed the suppression subtractive hybridization library of T thermophila exposed to DDT, and screened out 90 Expressed Sequence Tags whose expressions were significantly up- or downregulated with DDT treatment. From this, a series of important genes related to the DDT metabolism and detoxification were discovered, such as P450 gene, glutathione S-transferase gene and sterol carrier protein 2 gene. Furthermore, their expressions under different concentrations of DDT treatment were detected by real-time fluorescent quantitative PCR. The results show that Tetrahymena is a relevant and useful model organism for detecting DDT in the environment and for discovering biomarkers that can be used to develop specific bio-reporters at the molecular and genomic levels.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
So far, little is known on the distribution of hepatotoxic microcystin (MC) in various organs of bivalves, and there is no study on MC accumulation in bivalves from Chinese waters. Distribution pattern and seasonal dynamics of MC-LR, -YR and -RR in various organs (hepatopancreas, intestine, visceral mass, gill, foot, and rest) of four edible freshwater mussels (Anodonta woodiana, Hyriopsis cumingii, Cristaria plicata, and Lamprotula leai) were studied monthly during Oct. 2003-Sep. 2004 in Lake Taihu with toxic cyanobacterial blooms in the summer. Qualitative and quantitative determinations of MCs in the organs were done by LC-MS and HPLC. The major toxins were present in the hepatopancreas (45.5-55.4%), followed by visceral mass with substantial amount of gonad (27.6-35.5%), whereas gill and foot were the least (1.8-5.1%). The maximum MC contents in the hepatopancreas, intestine, visceral mass, gill, foot, and rest were 38.48, 20.65, 1.70, 0.64, 0.58, and 0.61 mu g/g DW, respectively. There were rather good positive correlation in MC contents between intestines and hepatopancreas of the four bivalves (r = 0.75-0.97, p < 0.05). There appeared to be positive correlations between the maximum MC content in the hepatopancreas and the delta(13)C (r = 0.919) or delta(15)N (r = 0.878) of the foot, indicating that the different MC content in the hepatopancreas might be due to different food ingestion. A glutathione (GSH) conjugate of MC-LR was also detected in the foot sample of C. plicata. Among the foot samples analyzed, 54% were above the provisional WHO tolerable daily intake (TDI) level, and the mean daily intakes from the four bivalves were 8-23.5 times the TDI value when the bivalves are eaten as a whole, suggesting the high risk of consuming bivalves in Lake Taihu. (C) 2005 Wiley Periodicals, Inc.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 mug(-1) microcystin-RR. The results showed that the growth of Synechococcus elongatus ( expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Signi. cant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.
Resumo:
The diagnostic applicability of the Clonorchis sinensis recombinant 7-kDa protein was evaluated. In enzyme-linked immunosorbent assays and immunoblots, the protein showed high sensitivities (81.3 and 71.9%, respectively) and specificities (92.6 and 89.7%, respectively) for sera obtained from various helminthic infections. Some paragonimiasis sera showed cross-reactions. The antigen might be valuable in the serodiagnosis of human clonorchiasis.
Resumo:
Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a new method for detection of ROS scavengers including superoxide dismutase, ascorbic acid and glutathione based on a 'probe' of peroxidase-oxidase biochemical oscillator. The oscillation period and amplitude change with different concentrations of scavengers. The linear ranges of superoxide dismutase, ascorbic acid and glutathione are respectively 1.56 x 10(-4)-1.56 x 10(-3) mg mL(-1), 1.75 x 10(-7) -1.75 x 10(-5) mol L-1 and 9.38 x 10(-7) -7.5 x 10(-5) mol L-1. The selectivity, linearity and precision for superoxide dismutase, ascorbic acid, and glutathione are presented and discussed. The results compared well with other standard methods for determination of superoxide dismutase, ascorbic acid and glutathione. Some possible steps in the overall reaction mechanisms are discussed.
Resumo:
Several biochemical responses were measured in silver crucian carp (Carassius auratus gibelio) after exposure to sediments obtained from contaminated Ya-Er Lake, No, 1 pond, and an unpolluted reference site, Honglian Lake. After 1 week of exposure, a significant induction of the phase I biotransformation enzyme (ethoxylresorufin-o-deethylase, EROD) was found (83-fold of control), whereas the phase II biotransformation enzyme (glutathione S-transferase, GST) exhibited a slight, but significant induction (1,4-fold of control) after 4 weeks of exposure. The level of cellular glutathione in the liver was also slightly elevated after 4 weeks of exposure. The delayed response of GST to the contaminants indicates that the phase I and phase II biotransformation enzymes are regulated differently in fish. The results suggest that EROD is a sensitive bioindicator to assess the toxicity of dioxin-contamined sediment in the laboratory, (C) 1998 Academic Press.
Resumo:
谷胱甘肽过氧化物酶 (Glutathione Peroxidase, GPX),是生物体内抗氧化应激酶系的重要成员,它可以清除脂质氢过氧化物(ROOH)及过氧化氢 (H_2O_2),保护机体免受活性氧的损伤或减少活性氧对机体的损伤程度。为了解决鼠源抗体酶GPX应用于人体时会诱发人抗鼠反应 (Human Anti-Mouse Antibody)这一问题,我们实验室从人单链抗体库中筛选了特异的抗体,经化学修饰后得到了具有GPX活性的抗体酶。本文在此工作的基础上,对己筛选出的人单链抗体基因进行了可溶性表达,并用化学修饰的方法进行硒化,得到了GPX活力为80U/μmol的抗体酶。根据优化的表达条件,直接得到了具有天然结构的抗体蛋白,省去了原来的包含体表达中的变性、复性步骤。且所得的抗体为融合蛋白,在蛋白的末端接有6个连续的组氨酸,因此用Ni-NTA亲和层析柱对其进行了一步纯化,即得到了纯抗体蛋白。从而大大的简化了抗体酶的制备过程。本论文还对抗体酶的生物活性进行了研究。采用H_2O_2/Fe~(2+) 自由基发生系统,分别以线粒体的膨胀度、乙二醛生成量和自由基含量为不同的损伤指标进行测量,研究了抗体酶对自由基损伤的牛心线粒体的保护作用。实验结果表明,硒化后的抗体酶具有较强的保护作用。