897 resultados para Genetics of osteoporosis
Resumo:
To provide tools for functional molecular genetics of the protozoan parasite Entamoeba histolytica, we investigated the use of the prokaryotic neomycin phosphotransferase (NEO) gene as a selectable marker for the transfection of the parasite. An Escherichia coli-derived plasmid vector was constructed (pA5'A3'NEO) containing the NEO coding region flanked by untranslated 5' and 3' sequences of an Ent. histolytica actin gene. Preceding experiments had revealed that amoebae are highly sensitive to the neomycin analogue G418 and do not survive in the presence of as little as 2 micrograms/ml. Transfection of circular pA5'A3'NEO via electroporation resulted in Ent. histolytica trophozoites resistant to G418 up to 100 micrograms/ml. DNA and RNA analyses of resistant cells indicated that (i) the transfected DNA was not integrated into the amoeba genome but was segregated episomally, (ii) in the amoebae, the plasmid replicated autonomously, (iii) the copy number of the plasmid and the expression of NEO-specific RNA were proportional to the amount of G418 used for selection, and (iv) under continuous selection, the plasmid was propagated over an observation period of 6 months. Moreover, the plasmid could be recloned into E. coli and was found to be unrearranged. To investigate the use of pA5'A3'NEO to coexpress other genes in Ent. histolytica, a second marker, the prokaryotic chloramphenicol acetyltransferase (CAT) gene under control of an Ent. histolytica lectin gene promoter was introduced into the plasmid. Transfection of the amoebae with this construct also conferred G418 resistance and, in addition, allowed continuous expression of CAT activity in quantities corresponding to the amount of G418 used for selection. When selection was discontinued, transfected plasmids were lost as indicated by an exponential decline of CAT activity in trophozoite extracts.
Resumo:
Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.
Resumo:
"From the Laboratory of Genetics of the Bussey Institution."
Resumo:
Hip fracture is the most adverse outcome of osteoporosis. Few surveillance sources exist to estimate the extent of the burden of illness of osteoporosis in Illinois. Because hip fractures are an important proxy measure for the existence of osteoporosis, the Illinois Health Care Cost Containment Council examined hospital use, treatment and outcome measures for hip fracture patients during the years 1995 through 2000. Osteoporosis, as the underlying cause of hip fracture hospitalizations, is investigated for results of treatment and disposition at discharge. In the year 1995, 12,637, discharges for hip fracture patients were reported by Illinois hospitals. In contrast, in the year 2000, 12,311, discharges for hip fracture patients were reported by Illinois hospitals. This study will provide a descriptive analysis of hospital reported discharges during this six-year period, focusing on patient age and gender, cause of injury, treatments, outcomes, billed charges and expected payment source. A significant percentage of hip fractures occurred in people aged 65 and above. Hip fracture rates per thousand persons in females exceeded males in every age group in the study. Females accounted for approximately 75% of all hip fracture discharges during the study period. Facility charges for hip fracture cases in 1995 were over $213.5 million. Comparable charges in 2000 exceeded $270 million. Over 80% of patients in 2000 were discharged to another health care facility for additional care. A review of pathological fractures and reported cases of diagnosed osteoporosis are included to round out the study.
Resumo:
Pentobarbitone sodium (Sodium 5-ethyl-5[1-methylbutyl]-pentobarbitone) is a short-acting barbiturate that is commonly used to euthanase animals. As part of our studies into the molecular genetics of copper toxicosis in Bedlington terrier dogs, reverse-transcription (RT)-PCR was noted to always fail on RNA samples collected from livers of dogs sacrificed by pentobarbitone injection. When samples were collected without pentobarbitone, however, RTPCR was always successful. We suspected the possible inhibition by pentobarbitone sodium of either reverse transcriptase or Taq polymerase. In vitro studies showed that pentobarbitone interference of PCR occurred at >4 mug/mul. To identify if pentobarbitone produced competitive inhibition, each components (Taq polymerase, MgCl2, dNTP, etc.) of the PCR was individually altered. However, inhibition still persisted, suggesting that multiple PCR components may be affected. Also it was shown that pentobarbitone interference was not dependent on the PCR product size. Simple dilution of pentobarbitone contaminated DNA solutions, and the addition of bovine serum albumin (BSA) to the PCR mix overcame pentobarbitone interference. In vivo, PCR by pentobarbitone was found to be compounded by high DNA concentration and pentobarbitone contamination. In addition, both high DNA concentration and pentobarbitone contamination could be overcome through dilution and the addition of BSA. Further work is required to quantify pentobarbitone concentration in the liver-extracted DNA and RNA samples before this inhibition effect on PCR can be fully elucidated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Objective: To review the policy and ethical implications of recent research on the molecular genetics of attention deficit hyperactivity disorder (ADHD). Method: MEDLINE and psycINFO database searches were used to identify studies on the genetics of ADHD. The implications of replicated candidate genes are discussed. Results: The findings for most genes have been inconsistent but several studies have implicated the genes in the dopaminergic pathway in the aetiology of ADHD. Conclusions: The current evidence on the genetics of ADHD is insufficient to justify genetic screening tests but it will provide important clues as to the aetiology of ADHD. Genetic information on susceptibility to ADHD has the potential to be abused and to stigmatize individuals. Researchers and clinicians need to be mindful of these issues in interpreting and disseminating the results of genetic studies of ADHD.
Resumo:
Do non-coding RNAs that are derived from the introns and exons of protein-coding and non-protein-coding genes represent a fundamental advance in the genetic operating system of higher organisms? Recent evidence from comparative genomics and molecular genetics indicates that this might be the case. If so, there will be profound consequences for our understanding of the genetics of these organisms, and in particular how the trajectories of differentiation and development and the differences among individuals and species are genomically programmed. But how might this hypothesis be tested?
Resumo:
This paper briefly explains why it would be unwise to use genetic and neurobiological knowledge to prevent cigarette smoking and tobacco-related disease. However implausible these uses may seem to those who are well informed about the genetics of tobacco use or tobacco-control policy, it is the preventive uses of genetic information and nicotine vaccines that most excite the interest of the media and the public. The major challenges that these approaches face need to be widely understood if we are to prevent these superfi cially attractive but controversial uses from undermining effective control policies and the development of better methods of helping smokers to quit.
Resumo:
Little is known about the population genetics of the louse infestations of humans. We used microsatellite DNA to study 11 double infestations, that is, hosts infested with head lice and body lice simultaneously. We tested for population structure on a host, and for population structure among seven hosts that shared sleeping quarters. We also sought evidence of migration among louse populations. Our results showed that: (i) the head and body lice on these individual hosts were two genetically distinct populations; (ii) each host had their own populations of head and body lice that were genetically distinct to those on other hosts; and (iii) lice had migrated from head to head, and from body to body, but not between heads and bodies. Our results indicate that head and body lice are separate species.
Resumo:
This article describes the recent advances that have been made in understanding the molecular genetics of retinitis pigmentosa (RP). The basic clinical and pathological aspects of RP will be described, together with the patterns of inheritance exhibited by the disorder. In addition, the most important genes that have been linked to RP will be discussed as well as the advances in molecular genetics which have led to the identification of mutations in these genes.
Resumo:
The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.
Resumo:
Increased osteoclast (OC) bone resorption and/or decreased osteoblast (OB) bone formation contribute to bone loss in osteoporosis and rheumatoid arthritis (RA). Findings of the basic and translational research presented in this thesis demonstrate a number of mechanisms by which cytokine-induced NF-κB activation controls bone resorption and formation: 1) Tumour necrosis factor-α (TNF) expands pool of OC precursors (OCPs) by promoting their proliferation through stimulation of the expression of macrophage colony stimulating factor (M-CSF) receptor, c-Fms, and switching M-CSF-induced resident (M2) to inflammatory (M1) macrophages with enhanced OC forming potential and increased production of inflammatory factors through induction of NF-κB RelB; 2) Similar to RANKL, TNF sequentially activates transcriptional factors NF-κB p50 and p52 followed by c-Fos and then NFATc1 to induce OC differentiation. However, TNF alone induces very limited OC differentiation. In contrast, it pre-activates OCPs to express cFos which cooperates with interleukin-1 (IL-1) produced by these OCPs in an autocrine mechanism by interacting with bone matrix to mediate the OC terminal differentiation and bone resorption from these pre-activated OCPs. 3) TNF-induced OC formation is independent of RANKL but it also induces NF-κB2 p100 to limit OC formation and bone resorption, and thus p100 deletion accelerates joint destruction and systemic bone loss in TNF-induced RA; 4) TNF receptor associated factor-3 (TRAF3) limits OC differentiation by negatively regulating non-canonical NF-κB activation and RANKL induces TRAF3 ubiquitination and lysosomal degradation to promote OC differentiation. Importantly, a lysosomal inhibitor that inhibits TRAF3 degradation prevents ovariectomy-induced bone loss; 5) RelB and Notch NICD bind RUNX2 to inhibit OB differentiation and RelB:p52 dimer association with NICD inhibit OB differentiation by enhancing the binding of RBPjκ to Hes1. These findings suggest that non-canonical NF- κB signaling could be targets to develop new therapies for RA or osteoporosis. For example 1) Agents that degrade TNF-induced RelB could block M1 macrophage differentiation to inhibit inflammation and joint destruction for the therapy of RA; 2)Agents that prevent p100 processing or TRAF3 degradation could inhibit bone resorption and also stimulate bone formation simultaneously for the therapy of osteoporosis.
Resumo:
Juniperus navicularis Gand. is a dioecious endemic conifer that constitutes the understory of seaside pine forests in Portugal, areas currently threatened by increasing urban expansion. The aim of this study is to assess the conservation status of previously known populations of this species located on its core area of distribution. The study was performed in south-west coast of Portugal. Three populations varying in size and pine density were analyzed. Number of individuals, population density, spatial distribution and individual characteristics of junipers were estimated. Female cone, seed characteristics and seed viability were also evaluated. Results suggest that J. navicularis populations are vulnerable because seminal recruitment is scarce, what may lead to a reduction of genetic variability due solely to vegetative propagation. This vulnerability seems to be strongly determined by climatic constraints toward increasing aridity. Ratio between male and female shrubs did not differ from 1:1 in any population. Deviations from 1:1 between mature and non-mature plants were found in all populations, denoting population ageing. Very low seed viability was observed. A major part of described Juniperus navicularis populations have disappeared through direct habitat loss to urban development, loss of fitness in drier and warmer locations and low seed viability. This study is the first to address J. navicularis conservation, and represents a valuable first step toward this species preservation.
Resumo:
Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.
Resumo:
International audience