944 resultados para Genetically modified organisms
Resumo:
Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.
Resumo:
The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.
Resumo:
The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 +/- 0.4% and 58.7 +/- 3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 +/- 0.1 g/dl and 19.8 +/- 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.
Resumo:
Successful gene transfer into stem cells would provide a potentially useful therapeutic modality for treatment of inherited and acquired disorders affecting hematopoietic tissues. Coculture of primate bone marrow cells with retroviral producer cells, autologous stroma, or an engineered stromal cell line expressing human stem cell factor has resulted in a low efficiency of gene transfer as reflected by the presence of 0.1-5% of genetically modified cells in the blood of reconstituted animals. Our experiments in a nonhuman primate model were designed to explore various transduction protocols that did not involve coculture in an effort to define clinically useful conditions and to enhance transduction efficiency of repopulating cells. We report the presence of genetically modified cells at levels ranging from 0.1% (granulocytes) to 14% (B lymphocytes) more than 1 year following reconstitution of myeloablated animals with CD34+ immunoselected cells transduced in suspension culture with cytokines for 4 days with a retrovirus containing the glucocerebrosidase gene. A period of prestimulation for 7 days in the presence of autologous stroma separated from the CD34+ cells by a porous membrane did not appear to enhance transduction efficiency. Infusion of transduced CD34+ cells into animals without myeloablation resulted in only transient appearance of genetically modified cells in peripheral blood. Our results document that retroviral transduction of primate repopulating cells can be achieved without coculture with stroma or producer cells and that the proportion of genetically modified cells may be highest in the B-lymphoid lineage under the given transduction conditions.
Resumo:
Cancer vaccines genetically engineered to produce interleukin 2 have been investigated intensively in a series of animal models and are at the point of entering into clinical trials. In this study we demonstrate a strong correlation between the rate of interleukin 2 production and the protection efficiency of murine S91 melanoma cell (clone M-3) vaccines. Best immunization is achieved with vaccines producing medium interleukin 2 levels of 1000-3000 units per 10(5) cells per day. Reduced interleukin 2 production evokes a corresponding decline in the number of successfully treated animals. Unexpectedly, when interleukin 2 expression is raised to high levels of 5000-7500 units per 10(5) cells per day, protection is completely absent because of impaired generation of tumor-specific cytotoxic T lymphocytes. In comparison, granulocyte-macrophage colony-stimulating factor as immunomodulator induces substantial immunization even at a moderate level of secretion and protects all animals at the maximal obtainable level of secretion. Our findings demonstrate the importance of the interleukin 2 level produced by genetically modified tumor cells and may have substantial impact for the clinical application of cancer vaccines.
Resumo:
As células tronco espermatogoniais (SSCs) são caracterizadas pela capacidade de autorrenovação, proliferação e transmissão das informações genéticas. Em caninos a primeira tentativa de xenotransplante não obteve o sucesso da produção de espermatozoides, no entanto, há evidências de que as células testiculares xenogênicas podem ser transplantadas no testículo do animal hospedeiro, e gerar espermatozoides viáveis do doador. Portanto, este estudo tem como objetivo realizar o xenotransplante das células germinativas caninas em camundongos imunosuprimidos, e com isto promover à produção de espermatozoides caninos viáveis, geneticamente modificados. E por meio desta técnica, analisar a eficiência da espermatogênese pós-transplante. Células germinativas testiculares foram caracterizadas, isoladas e cultivadas de cães pré-púberes, por meio de sistemas de cultura de enriquecimento e fatores de crescimento. As células foram transduzidas com um gene repórter GFP e LacZ, e por um vetor lentiviral para indentificar as SSCs nos testículos receptores. As SSCs transduzidas foram transplantadas nos testículos de camundongos (C57BL/6) tratados com Busulfan, após diferentes períodos os animais receptores foram eutanasiados e analisados. Aos 10 dias de cultivo as células germinativas adultas foram positivas para CD49f, CD117, e com 5 dias uma expressão semelhante de GFRA1 e DAZL, demonstrando a presença de SSCs e algumas células em meiose. Transplantamos 105 células e 20-43% das células transplantadas foram identificadas na membrana basal dos túbulos seminíferos do animal receptor. Portanto, o transplante das células germinativas caninas, mostrou que a purificação e o cultivo realizados são possíveis para obter SSCs caninas, as quais colonizaram os túbulos seminíferos dos camundongos imunodeficientes e mantiveram-se vivas na membrana basal por 90 dias após transplante, mesmo que estes animais tenham distância filogenética
Resumo:
From the 1990s, through the first decade of the XXI century, the food industry has intensified its production in technologically and genetically sophisticated ways. It has introduced transgenic and genetically modified foods, taking into account an economical push to obtain higher quantities in less time. Today, the foods that we consume seem more like products created in a laboratory than ones that come from working directly with the earth and with animals. These changes in the food industry are just a part of a long and complicated story in which economical interests figure heavily. The single-crop farming era begins in the 1970s in The United States and Europe. In some regions in Spain having a strong agricultural tradition, small private and family-owned farms that provided food to surrounding populations started disappearing, being uprooted in favor of the creation of large, multi-national companies. The market would expand with the growth of production facilities housing large quantities of animals living numbered and crowded. They mainly house cows, chickens, and pigs from which we obtain different products like milk, eggs and meat. The way these “industrial animals” live today does not even come close to what we think of as a balanced ecosystem, seeing as they are surrounded by machines and by the general use of sophisticated techniques to achieve the best return possible...
Resumo:
Helicoverpa armigera (Hübner) was officially reported in Brazil in 2013. This species is closely related to Helicoverpa zea (Boddie) and has caused significant crop damage in Brazil. The use of genetically modified crops expressing insecticidal protein from Bacillus thuringiensis (Berliner) has been one of the control tactics for managing these pests. Genetically modified maize expressing Vip3Aa20 was approved to commercial use in Brazil in 2009. Understanding the genetic diversity and the susceptibility to B. thuringiensis proteins in H. armigera and H. zea populations in Brazil are crucial for establishing Insect Resistance Management (IRM) programs in Brazil. Therefore, the objectives of this study were: (a) to infer demographic parameters and genetic structure of H. armigera and H. zea Brazil; (b) to assess the intra and interspecific gene flow and genetic diversity of H. armigera and H. zea; and (c) to evaluate the susceptibility to Vip3Aa20 protein in H. armigera and H. zea populations of Brazil. A phylogeographic analysis of field H. armigera and H. zea populations was performed using a partial sequence data from the cytochrome c oxidase I (COI) gene. H. armigera individuals were most prevalent on dicotyledonous hosts and H. zea individuals were most prevalent on maize crops. Both species showed signs of demographic expansion and no genetic structure. High genetic diversity and wide distribution were observed for H. armigera. A joint analysis indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. In the cross-species amplification study, seven microsatellite loci were amplified; and showed a potential hybrid offspring in natural conditions. Interespecific analyses using the same microsatellite loci with Brazilian H. armigera and H. zea in compare to the USA H. zea were also conducted. When analyses were performed within each species, 10 microsatellites were used for H. armigera, and eight for H. zea. We detected high intraspecific gene flow in populations of H. armigera and H. zea from Brazil and H. zea from the USA. Genetic diversity was similar for both species. However, H. armigera was more similar to H. zea from Brazil than H. zea from the USA and some putative hybrid individuals were found in Brazilian populations.Tthere was low gene flow between Brazilian and USA H. zea. The baseline susceptibility to Vip3Aa20 resulted in low interpopulation variation for H. zea (3-fold) and for H. armigera (5-fold), based on LC50. H. armigera was more tolerant to Vip3Aa20 than H. zea (≈ 40 to 75-fold, based on CL50). The diagnostic concentration for susceptibility monitoring, based on CL99, was fairly high (6,400 ng Vip3Aa20/cm2) for H. zea and not validated for H. armigera due to the high amount of protein needed for bioassays. Implementing IRM strategies to Vip3Aa20 in H. armigera and H. zea will be of a great challenge in Brazil, mainly due to the low susceptibility to Vip3Aa20 and high genetic diversity and gene flow in both species, besides a potential of hybrid individuals between H. armigera and H. zea under field conditions.
Resumo:
Cohesin's Smc1, Smc3, and kleisin subunits create a tripartite ring within which sister DNAs are entrapped. Evidence suggests that DNA enters through a gate created by transient dissociation of the Smc1/3 interface. Release at the onset of anaphase is triggered by proteolytic cleavage of kleisin. Less well understood is the mechanism of release at other stages of the cell cycle, in particular during prophase when most cohesin dissociates from chromosome arms in a process dependent on the regulatory subunit Wapl. We show here that Wapl-dependent release from salivary gland polytene chromosomes during interphase and from neuroblast chromosome arms during prophase is blocked by translational fusion of Smc3's C-terminus to kleisin's N-terminus. Our findings imply that proteolysis-independent release of cohesin from chromatin is mediated by Wapl-dependent escape of DNAs through a gate created by transient dissociation of the Smc3/kleisin interface. Thus, cohesin's DNA entry and exit gates are distinct.
Resumo:
Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p
Resumo:
Disease in wildlife raises a number of issues that have not been widely considered in the bioethical literature. However, wildlife disease has major implications for human welfare. The majority of emerging human infectious diseases are zoonotic: that is, they occur in humans by cross-species transmission from animal hosts. Managing these diseases often involves balancing concerns with human health against animal welfare and conservation concerns. Many infectious diseases of domestic animals are shared with wild animals, although it is often unclear whether the infection spills over from wild animals to domestic animals or vice versa. Culling is the standard means of managing such diseases, bringing economic considerations, animal welfare and conservation into conflict. Infectious diseases are also major threatening processes in conservation biology and their appropriate management by culling, vaccination or treatment raises substantial animal ethics issues. One particular issue of great significance in Australia is an ongoing research program to develop genetically modified pathogens to control vertebrate pests including rabbits, foxes and house mice. Release of any self-replicating GMO vertebrate pathogen gives rise to a whole series of ethical questions. We briefly review current Australian legal responses to these problems. Finally, we present two unresolved problems of general importance that are exemplified by wildlife disease. First, to what extent can or should 'bioethics' be broadened beyond direct concerns with human welfare to animal welfare and environmental welfare? Second, how should the irreducible uncertainty of ecological systems be accounted for in ethical decision making?
Resumo:
The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The nutritive value of transgenic peas expressing an a-amylase inhibitor (alpha-Ail) was evaluated with broiler chickens. The effects of feeding transgenic peas on the development of visceral organs associated with digestion and nutrient absorption were also examined. The chemical composition of the conventional and the transgenic peas used in this study were similar. In the two feeding trials, that were conducted normal and transgenic peas were incorporated into a maize-soybean diet at concentrations up to 500 g kg(-1). The diets were balanced to contain similar levels of apparent metabolisable energy (AME) and amino acids. In the first trial, the birds were fed the diets from 3 to 17days post-hatching and with levels of transgenic peas at 250 g kg(-1) or greater there was a significant reduction in body weight but an increase in feed intake resulting in deceased feed conversion efficiency. In the second trial, in which the birds were fed diets containing 300 g kg(-1) transgenic peas until 40 days of age, growth performance was significantly reduced. It was also demonstrated that the ileal starch digestibility coefficient (0.80 vs 0.42) was significantly reduced in the birds fed transgenic peas. Determination of AME and ileal digestibility of amino acids in 5-week-old broilers demonstrated a significant reduction in AME (12.12 vs 5.08 MJ kg(-1) DM) in the birds fed the transgenic peas. The AME value recorded for transgenic peas reflected the lower starch digestibility of this line. Real digestion of protein and amino acids was unaffected by treatment. Expression of a-Ail in peas did not appear to affect bird health or the utilisation of dietary protein. However, the significant reduction in ileal digestion of starch in transgenic peas does reduce the utility of this feedstuff in monogastric diets where efficient energy utilisation is required. (c) 2006 Society of Chemical Industry.
Development of a multicellular co-culture model of normal and cystic fibrosis human airways in vitro
Resumo:
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.